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 Soft set theory deals with uncertainty and it has been applied to many fields both 

as a theoretical and application aspect. Since its inception, different kinds of soft 

set operations have been defined and used in various types. This paper is a 

theoretical study of soft sets and in this paper, it is aimed to contribute to the soft 

set literature by obtaining the distributions of  different kinds of soft binary 

piecewise operations over complementary soft binary piecewise star and theta 

operations in order to obtain some algebraic structures. 
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 Esnek küme teorisi belirsizliklerle ilgilenir ve hem teorik hem de uygulama yönüyle 

birçok alana uygulanmıştır. Başlangıcından bu yana, farklı çeşitlerde esnek küme 

işlemleri tanımlanmış ve çeşitli türlerde kullanılmıştır. Bu makale esnek kümelerin 

teorik bir çalışmasıdır ve bu çalışmada, bazı cebirsel yapılar elde etmek için 

tümleyenli esnek ikili parçalı yıldız ve teta işlemleri üzerine esnek ikili parçalı 

işlemlerin dağılımlarının elde edilmesiyle esnek küme literatürüne katkıda 

bulunulması amaçlanmıştır. 
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To Cite: Sezgin A, Sarıalioğlu M, Demirci AM., 2024. Distributions of soft binary piecewise operations over complementary soft binary 

piecewise star(∗)and theta(θ)operations. Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 4(1): 129-165. 

 

1. Introduction 

Molodtsov (1999) introduced Soft Set Theory as a mathematical tool to overcome 

uncertainties. This theory has been applied to many fields by Özlü (2022a, 2022b) and Paik and 

Mondal (2022). As regards algebraic structures, it has been implemented by Atagün and Aygün 
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(2016) and Addis et al. (2022).  Riaz and Hashimi (2019) and Ayub et al. (2021) studied on 

Linear Diophantine Fuzzy Sets, Riaz et al. (2023) on Linear Diophantine Fuzzy aggregation 

operators, Riaz et al. (2021) on Spherical Linear Diophantine Fuzzy Sets, and they are all top 

recent topics as  novel mathematical approaches to model vagueness and uncertainty in 

decision-making problems. Maji et al. (2003) and Pei and Miao (2005) were the first to study 

on soft set operations. After then, Ali et al. (2009) introduced several soft set operations 

(restricted and extended soft set operations) and Sezgin and Atagün (2011) examined their basic 

properites. Sezgin et al. (2019) introduced a new soft set operation called extended difference 

of soft sets and Stojanovic (2021) defined extended symmetric difference of soft sets and 

investigated its properties. 

Çağman (2021) introduced two conditional complements of sets as (inclusive 

complement and exclusive complement) and the relationships between them were explored. 

After this study, Sezgin et al. (2023c) defined new complements. They also transferred these 

complements to soft set theory, and Aybek (2023) introduced some new restricted soft set 

operations and extended soft set operations. By changing the form of extended soft set 

operations using the complement at the first and second row of the piecewise function of 

extended soft set operations, Demirci (2024), Sarıalioğlu (2024) and Akbulut (2024) proposed  

a new type of soft set operation and studied their basic properties. Also, Eren (2019) defined a 

new type of soft difference operations and by being inspired this study, Yavuz (2024) and 

Sezgin and  Yavuz (2023a) defined some new soft set operations, which they call soft binary 

piecewise operations and they studied their basic properties.  Also, Sezgin and Demirci (2023), 

Sezgin and Atagün (2023), Sezgin and Yavuz (2023b), Sezgin and Aybek (2023), Sezgin et al. 

(2023a, 2023b), Sezgin and Dagtoros (2023) continued their work on soft set operations by 

defining a new type of soft binary piecewise operation by changing the form of soft binary 

piecewise operation using the complement at the first row of the soft binary piecewise 

operations. 

Sezgin and Demirci (2023) and Sezgin and Sarıalioğlu (2024) defined complementary 

soft binary piecewise theta and complementary soft binary piecewise star operation, 

respectively. The algebraic properties of these new operations were examined in detail. 

Especially the distributions of these  operations over extended soft set operations, 

complementary extended soft set operations, soft binary piecewise operations, complementary 

soft binary piecewise operations and restricted soft set operations were handled . In this study, 

with Section 3, we aim to contribute to the literature of soft set theory by obtaining the 
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distributions of  soft binary piecewise operations over complementary soft binary piecewise 

star and theta operations in order to acquire some algebraic structures. 

 

2. Preliminaries 

Definition 2.1. Let  U be the universal set,  E be the parameter set, P(U) be the power set 

of U and A ⊆ E. A pair (F, A)is called a soft set over U where F is a set-valued function such 

that F: A → P(U). (Molodtsov, 1999) 

The set of all the soft sets over U is designated by SE(U), and throughout this paper, all the 

soft sets are the elements of SE(U). 

        Çağman (2021) defined two conditional complements of sets, for the ease of illustration, 

we show these complements as + and 𝜃, respectively. These complements are defined as 

following: Let A and B be two subsets of U.  B-inclusive complement of A is defined by, 

A+B=A’∪B and B-exclusive complement of A is defined by A𝜃B=A’∩B’. Here, U refers to a 

universe, A’ is the complement of A over U. Sezgin et al. (2023c) introduced such new three 

complements as binary operations of sets as following: Let A and B be two subsets of U.  Then, 

A*B=A’∪B’, A𝛾B=A’∩B,  A𝝺B=A∪B’. Aybek (2024) conveyed these classical sets to soft 

sets, and they defined restricted and extended soft set operations and examined their properties. 

       As a summary for soft set operations, we can categorize all types of soft set operations as 

following: Let "∇" be used to represent the set operations (i.e., here ∇ can be ∩,∪,\, ∆, +,θ, *, 

λ,γ),  then restricted operations, extended operations, complementary extended operations, soft 

binary piecewise operations, complementary soft binary piecewise operations are defined in 

soft set theory as following:  

Definition 2.2. Let (D, K) and (J, R) be soft sets over U. The restricted  ∇ operation of  (D, K) 

and (J, R) is the soft set (Y,S), denoted by, (D, K)∇R(J, R) = (Y, S), where S = K ∩ R ≠ ∅ and 

∀s ∈ S, Y(s) =D(s)∇ J(s). (Ali et. al., 2009; Sezgin and Atagün, 2011; Aybek, 2024) 

Definition 2.3. Let (D, K) and (J,R) be soft sets over U. The extended  ∇ operation of (D, K) 

and (J, R) is the soft set (Y,S), denoted by, (D, K)∇ε(J, R) = (Y, S), where S = K ∪ R and ∀s ∈

S,  

Y(s) = {

D(s), s ∈ K\R,

J(s), s ∈ R\K,

D(s) ∇J(s), s ∈ K ∩ R.

 

(Maji et al., 2003; Ali et al., 2009; Sezgin et al., 2019; Stojanovic, 2021; Aybek, 2024) 

        Definition 2.4. Let (D, K) and (J, R)  be soft sets over U.  The complementary extended  ∇ 
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operation of (D, K) and (J, R) is the soft set (Y,S), denoted by,  (D, K)
＊
  ∇ε

(J, R) = (Y, S), where 

S = K ∪ R and ∀s ∈ S, 

Y(s) = {

D′(s), s ∈ K\R

J′(s), s ∈ R\K,

D(s) ∇J(s),  s ∈ K ∩ R.

 

(Sarıalioğlu, 2024; Demirci, 2024; Akbulut, 2024) 

           Definition 2.5. Let (D, K) and (J, R) be soft sets over U. The soft binary piecewise ∇ 

operation of (D, K) and (J, R) is the soft set (Y, K), denoted by, (D, K)
~
∇ (J, R ) = (Y, P), where 

∀s∊K, 

                  D(s),                     s∊K\R 

Y(s)= 

                  D(s)∇J(s),              s∊K∩R 

(Eren, 2019; Yavuz, 2024, Sezgin and Yavuz, 2023a) 

Definition 2.6. Let (D, K)and (J, R)be soft sets over U. The complementary soft binary 

piecewise ∇ operation of (D, K) and (J, R) is the soft set (Y,K), denoted by,  (D, K)
＊
~
∇

(J, R) =

(Y, K), where ∀s∊K; 

                  D’(s),              s∊K\R 

Y(s)= 

                  D(s)∇J(s),        s∊K∩R 

(Sezgin and Demirci, 2023; Sezgin and Atagün, 2023; Sezgin and Aybek, 2023; Sezgin et al., 

2023a; Sezgin et al., 2023b; Sezgin and Yavuz, 2023b; Sezgin and Dagtoros, 2023; Sezgin and 

Çağman, 2024; Sezgin and Sarıalioğlu, 2024) 

Definition 2.7. Let (A, F) and (B, G) be soft sets over U.  The complementary soft binary 

piecewise star operation of (A, F) and (B, G) is the soft set (C,F), denoted by,  (A, F)
＊

~
＊

 (B, G) =

(C, F), where ∀t∊F,  

                  A’(s),              s∊F\G 

C(s)= 

                 A’(s)∪B’(s       s∊F∩G 

(Sezgin and Demirci, 2023) 
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Definition 2.8. Let (A, F) and (B, G) be soft sets over U.  The complementary soft binary 

piecewise theta operation of (A, F) and (B, G) is the soft set (C,F), denoted by,  (A, F)
＊
~
θ

 (B, G) =

(C, F), where ∀t∊F,  

                  A’(s),                    s∊F\G 

C(s)= 

                 A’(s)∩B’(s),          s∊F∩G 

 

(Sezgin and Sarıalioğlu, 2024) 

 

3. Distribution of Soft Binary Piecewise Operations Over Complementary Soft 

Binary Piecewise Star and Theta Operations 

3.1.1. Distribution of soft binary piecewise operations over complementary soft 

binary piecewise star operation: 

1) (A,F) 
~
+ [(B,G)

＊

~
＊

(C,H)]=[(A,F)
~

 ＊(B,G)]∪̃[(C,H)
~

 ＊(A,F)], where F∩G’∩H=∅. 

  Proof: Let (B,G)
＊

~
＊

(C,H)=(M,G), where ∀s∊G; 

 

                 B’(s),                s∊G\H 

M(s)= 

                 B’(s)∪C’(s),    s∊G∩H 

Let (A,F) 
~
+ (M,G)=(N,F), where ∀s∊F; 

                 A(s),                 s∊F\G       

N(s)= 

                 A’(s)∪M(s),     s∊F∩G           

Thus, 

                 A(s),                              s∊F\G  

N(s)=      A’(s)∪B’(s),                    s∊F∩(G\H)=F∩G∩H’              

                A’(s)∪ [(B’(s)∪C’(s)],   s∊F∩(G∩H)=F∩G∩H        

Now let’s handle [(A,F)
~

 ＊(B,G)] ∪̃ [(C,H)
~

 ＊(A,F)]. Let (A,F)
~
＊

(B,G)=(V,F), where 

∀s∊F; 

               A(s),                      s∊F\G 
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V(s)= 

               A’(s)∪B’(s),         s∊F∩G  

Suppose that (C,H)
~

 ＊(A, F)=(W,H), where ∀s∊H; 

                C(s),                     s∊H\F 

W(s)= 

                C’(s)∪A’(s),        s∊H∩F 

Let (V,F) ∪̃( W,H)=(T,F) ∀s∊F; 

                 V(s),                       s∊F\H 

T(s)= 

                 V(s)∪W(s),            s∊F∩H     

Thus, 

               A(s),                                           s∊(F\G)\H=F∩G’∩H’ 

               A’(s)∪B’(s),                              s∊(F∩G)\H=F∩G∩H’ 

               A(s)∪C(s),                                 s∊(F\G)∩(H\F)=∅ 

T(s)=     A(s)∪[C’(s)∪A’(s)],                   s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A’(s)∪B’(s)]∪C(s),                   s∊(F∩G)∩(H\F)=∅ 

              [A’(s)∪B’(s)]∪[C’(s)∪A’(s)],    s∊(F∩G)∩(H∩F)=F∩G∩H    

Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

2) [(A,F)
＊

~
＊

(B,G)]+̃(C,H)=[(A,F)
＊
~
∪

(C,H)]∩̃[(B,G)∪̃(C,H)], where F∩G∩H’=∅. 

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)+̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∪C(s),     s∊F∩H    

Thus, 
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               A’(s),                       s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),             s∊(F∩G)\H=F∩G∩H’ 

               A(s)∪C(s),               s∊(F\G)∩H=F∩G’∩H 

             [A(s)∩B(s)]∪C(s),     s∊(F∩G)∩H=F∩G∩H   

Now let’s handle [(A,F)
＊
~
∪

(C,H)]∩̃[(B,G)∪̃(C,H). Let (A,F)
＊
~
∪

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                 s∊F\H 

V(s)= 

               A(s)∪C(s),         s∊F∩H 

Suppose that (B,G)∪̃(C,H)=(W,G), where ∀s∊G; 

                B(s),                     s∊G\H 

W(s)= 

                B(s)∪C(s),           s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                 s∊F\H 

T(s)= 

                 V(s)∩W(s),      s∊F∩H 

Thus, 

 

              A’(s),                                       s∊(F\H)\G=F∩G’∩H’ 

              A(s)∪C(s),                               s∊(F∩H)\G=F∩G’∩H 

              A’(s)∩B(s),                             s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∩[B(s)∪C(s)],                 s∊(F\H)∩(G∩H)=∅ 

              [A(s)∪C(s)]∩B(s),                  s∊(F∩H)∩(G\H)=∅ 

              [A(s)∪C(s)]∩[B(s)∪C(s)],      s∊(F∩H)∩(G∩H)=F∩G∩H        

It is seen that (N,F)=(T,F). 

3) (A,F)γ̃[(B,G)
＊

~
＊

(C,H)]=[(A,F)
~
 θ(B,G)]∪̃[(C,H)

~
 θ(A,F)], where F∩G’∩H=∅. 

  Proof: Let (B,G)
＊

~
＊

(C,H)=(M,G), where ∀s∊G; 
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                 B’(s),               s∊G\H 

M(s)= 

                 B’(s)∪C’(s),    s∊G∩H 

Let (A,F)
~
 γ(M,G)=(N,F), where  ∀s∊F; 

                 A(s),                 s∊F\G        

N(s)= 

                 A’(s)∩M(s),     s∊F∩G           

Thus, 

                 A(s),                              s∊F\G  

N(s)=      A’(s)∩B’(s),                   s∊F∩(G\H)=F∩G∩H’              

                A’(s)∩[(B’(s)∪C’(s)],   s∊F∩(G∩H)=F∩G∩H       

Now let’s handle [(A,F)
~
 θ (B,G)]∪̃[(C,H)

~
 θ(A,F)]. Let (A,F)

~
 θ (B,G)=(V,F), where 

∀s∊F; 

               A(s),                      s∊F\G 

V(s)= 

               A’(s)∩B’(s),         s∊F∩G  

Suppose that (C,H)
~
 θ (A,F)=(W,H), where ∀s∊H; 

                C(s),                    s∊H\F 

W(s)= 

                C’(s)∩A’(s),       s∊H∩F 

Let (V,F)∪̃(W,H)=(T,F), where ∀s∊F; 

 

                 V(s),                      s∊F\H 

T(s)= 

                 V(s)∪W(s),           s∊F∩H 

Thus, 

               A(s),                                             s∊(F\G)\H=F∩G’∩H’ 

               A’(s)∩B’(s),                                 s∊(F∩G)\H=F∩G∩H’ 

               A(s)∪C(s),                                    s∊(F\G)∩(H\F)=∅ 

T(s)=      A(s)∪[C’(s)∩A’(s)],                    s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A’(s)∩B’(s)]∪C(s),                      s∊(F∩G)∩(H\F)=∅ 

              [A’(s)∩B’(s)]∪ [C’(s)∩A’(s)],     s∊(F∩G)∩(H∩F)=F∩G∩H 
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Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

4) [(A,F)
＊

~
＊

(B,G)]γ̃(C,H)=[(A,F)
＊

~
∩

(C,H)]∩̃[(B,G)
＊

~
∩

(C,H)], where F∩G∩H’=∅. 

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)θ̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∩C(s),      s∊F∩H    

Thus, 

               A’(s),                     s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),          s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s)             s∊(F\G)∩H=F∩G’∩H 

             [A(s)∩B(s)]∩C(s)   s∊(F∩G)∩H=F∩G∩H   

Now let’s handle [(A,F)
＊

~
∩

(C,H)]∩̃[(B,G)
＊

~
∩

(C,H)]. Let (A,F)
＊

~
∩

 (C,H)=(V,F), where 

∀s∊F; 

               A’(s),                 s∊F\H 

V(s)= 

               A(s)∩C(s),          s∊F∩H 

Suppose that (B,G)
＊

~
∩

(C,H)=(W,G), where ∀s∊G; 

                B’(s),                    s∊G\H 

W(s)= 

                B(s)∩C(s),            s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                  V(s),                   s∊F\H 

T(s)= 

                 V(s)∩W(s),         s∊F∩H 
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Thus, 

              A’(s),                                    s∊(F\H)\G=F∩G’∩H’ 

              A(s)∩C(s),                            s∊(F∩H)\G=F∩G’∩H 

              A’(s)∩B’(s),                         s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∩[B(s)∩C(s)],              s∊(F\H)∩(G∩H)=∅ 

              [A(s)∩C(s)]∩B’(s),               s∊(F∩H)∩(G\H)=∅ 

              [A(s)∩C(s)]∩[B(s)∩C(s)      s∊(F∩H)∩(G∩H)=F∩G∩H         

It is seen that (N,F)=(T,F). 

5) (A,F)
~
\ [(B,G)

＊

~
＊

(C,H)]=[(A,F)∩̃(B,G)]∩̃[(C,H)∩̃(A,F)], where F∩G’∩H=∅. 

Proof: Let (B,G)
＊

~
＊

(C,H)=(M,G), where ∀s∊G; 

                 B’(s),                s∊G\H 

M(s)= 

                 B’(s)∪C’(s),    s∊G∩H 

Let (A,F)\̃(M,G)=(N,F),  where  ∀s∊F; 

                 A(s),                 s∊F\G       

N(s)= 

                 A(s)∩M’(s),    s∊F∩G           

Thus, 

                 A(s),                         s∊F\G  

 N(s)=      A(s)∩B(s),                s∊F∩(G\H)=F∩G∩H’              

                A(s)∩[(B(s)∩C(s)],   s∊F∩(G∩H)=F∩G∩H      

Now let’s handle [(A,F)∩̃(B,G)]∩̃[(C,H)∩̃ (A,F)]. Let (A,F)
~
∩(B,G)=(V,F), where ∀s∊F; 

               A(s),                      s∊F\G 

V(s)= 

               A(s)∩B(s),           s∊F∩G  

Suppose that (C,H)∩̃ (A,F)=(W,H), where ∀s∊H; 

                 C(s),                   s∊H\F 

W(s)= 

                C(s)∩A(s),          s∊H∩F 

Let (V,F)∩̃(W,H)=(T,F), where  ∀s∊F; 
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                 V(s),                    s∊F\H 

T(s)= 

                 V(s)∩W(s),         s∊F∩H     

Thus, 

               A(s),                                          s∊(F\G)\H=F∩G’∩H’ 

               A(s)∩B(s),                                s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s),                                s∊(F\G)∩(H\F)=∅ 

T(s)=      A(s)∩[C(s)∩A(s)],                    s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A(s)∩B(s)]∩C(s),                     s∊(F∩G)∩(H\F)=∅ 

              [A(s)∩B(s)]∩[C(s)∩A(s)],        s∊(F∩G)∩(H∩F)=F∩G∩H      

  Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

6) [(A,F)
＊

~
＊

(B,G)]\̃(C,H)=[(A,F)
＊
~
θ

(C,H)]∪̃[(B,G)
＊
~
θ

(C,H)]. 

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)\̃(C,H)=(N,F), where ∀s∊F; 

              M(s),                 s∊F\H     

N(s)= 

                M(s)∩C’(s),    s∊F∩H  

Thus,   

              A’(s),                              s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),                   s∊(F∩G)\H=F∩G∩H’ 

              A’(s)∩C’(s),                   s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∪B’(s)]∩C’(s),      s∊(F∩G)∩H=F∩G∩H   

Now let’s handle [(A,F)
＊
~
θ

(C,H)]∪̃[(B,G)
＊
~
θ

(C,H)]. Let (A,F)
＊
~
θ

(C,H)=(V,F), where 

∀s∊F; 
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               A’(s),                 s∊F\H 

V(s)= 

               A’(s)∩C’(s),      s∊F∩H 

Suppose that (B,G)
＊
~
θ

(C,H)=(W,G), where ∀s∊G; 

                B’(s),                    s∊G\H 

W(s)= 

                B’(s)∩C’(s),         s∊G∩H 

Let (V,F)∪̃(W,H)=(T,F), where ∀ s∊F; 

                 V(s),                   s∊F\H 

T(s)= 

                 V(s)∪W(s),         s∊F∩H 

Thus, 

               A’(s),                                         s∊(F\H)\G=F∩G’∩H’ 

               A’(s)∩C’(s),                              s∊(F∩H)\G=F∩G’∩H 

               A’(s)∪B’(s),                              s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∪[B’(s)∩C’(s)],                s∊(F\H)∩(G∩H)=∅ 

              [A’(s) ∩C’(s)]∪B’(s),                s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∩C’(s)]∪ [B’(s)∩C’(s)],   s∊(F∩H)∩(G∩H)=F∩G∩H           

It is seen that (N,F)=(T,F). 

7) (A,F)λ̃[(B,G)
＊

~
＊

(C,H)]=[(A,F) ∪̃ (B,G)]∩̃[(C,H) ∪̃ (A,F)]. 

  Proof: Let (B,G)
＊

~
＊

(C,H)=(M,G), where ∀s∊G; 

                 B’(s),                s∊G\H 

M(s)= 

                 B’(s)∪C’(s),    s∊G∩H 

Let (A,F)λ̃(M,G)=(N,F), where  ∀s∊F; 

                 A(s),                   s∊F\G       

N(s)= 

                 A(s)∪M’(s),       s∊F∩G       

Hence,     
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                A(s),                           s∊F\G  

N(s)=      A(s)∪B(s),                  s∊F∩(G\H)=F∩G∩H’              

                A(s)∪[(B(s)∩C(s)],   s∊F∩(G∩H)=F∩G∩H       

Now let’s handle [(A,F) ∪̃ (B,G)]∩̃[(C,H) ∪̃(A,F)]. Let (A,F) ∪̃ (B,G)=(V,F), where 

∀s∊F; 

              A(s),                      s∊F\G 

V(s)= 

               A(s)∪B(s),           s∊F∩G  

Suppose that (C,H)∪̃ (A,F)=(W,H), where ∀s∊H; 

                C(s),                     s∊H\F 

W(s)= 

                C(s)∪A(s),           s∊H∩F 

Let (V,F)∩̃(W,H)=(T,F) ∀s∊F; 

                 V(s),                     s∊F\H 

T(s)= 

                 V(s)∩W(s),         s∊F∩H 

Hence  

               A(s),                                          s∊(F\G)\H=F∩G’∩H’ 

               A(s)∪B(s),                                 s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s),                                s∊(F\G)∩(H\F)=∅ 

T(s)=      A(s)∩[C(s)∪A(s)],                    s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A(s)∪B(s)]∩C(s),                     s∊(F∩G)∩(H\F)=∅ 

              [A(s)∪B(s)]∩[C(s)∪A(s)],         s∊(F∩G)∩(H∩F)=F∩G∩H 

               A(s),                                           s∊(F\G)\H=F∩G’∩H’ 

               A(s)∪B(s),                                 s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s),                                 s∊(F\G)∩(H\F)=∅ 

T(s)=      A(s),                                           s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A(s)∪B(s)]∩C(s),                      s∊(F∩G)∩(H\F)=∅ 

              [A(s)∪B(s)]∩[C(s)∪A(s)],         s∊(F∩G)∩(H∩F)=F∩G∩H 

Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. 

Thus, it is seen that (N,F)=(T,F). 
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8) [(A,F)
＊

~
＊

(B,G)]λ̃(C,H)=[(A,F)
＊

~
＊

(C,H)]∪̃[(B,G)
＊

~
＊

(C,H)]. 

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)λ̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M(s)∪C’(s),     s∊F∩H    

Thus, 

               A’(s),                         s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),               s∊(F∩G)\H=F∩G∩H’ 

               A’(s)∪C’(s)               s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∪B’(s)]∪C’(s)   s∊(F∩G)∩H=F∩G∩H   

Now let’s handle [(A,F)
＊

~
＊

(C,H)]∪̃[(B,G)
＊

~
＊

(C,H)]. Let (A,F)
＊

~
＊

 (C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A’(s)∪C’(s),         s∊F∩H 

Suppose that (B,G)
＊

~
＊

(C,H)=(W,G), where ∀s∊G 

                B’(s),                      s∊G\H 

W(s)= 

                B’(s)∪C’(s),          s∊G∩H 

Let (V,F)∪̃(W,H)=(T,F), where ∀s∊F; 

                 V(s),                      s∊F\H 

T(s)= 

                 V(s)∪W(s),           s∊F∩H 

Thus, 
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              A’(s),                                         s∊(F\H)\G=F∩G’∩H’ 

              A’(s)∪C’(s),                              s∊(F∩H)\G=F∩G’∩H 

              A’(s)∪B’(s),                              s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∪[B’(s)∪C’(s)],                s∊(F\H)∩(G∩H)=∅ 

              [A’(s) ∪C’(s)]∪B’(s),               s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∪C’(s)]∪[B’(s)∪C’(s)],   s∊(F∩H)∩(G∩H)=F∩G∩H          

It is seen that (N,F)=(T,F). 

9) [(A,F)
＊

~
＊

(B,G)]θ̃(C,H)=[(A,F)

＊
~
\

(C,H)]∩̃[(B,G)\̃(C,H)], where F∩G∩H’=∅. 

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)=  

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)θ̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H      

N(s)= 

                M’(s)∩C’(s),    s∊F∩H    

Thus, 

               A’(s),                        s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),             s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C’(s)              s∊(F\G)∩H=F∩G’∩H 

             [A(s)∩B(s)]∩C’(s)    s∊(F∩G)∩H=F∩G∩H  

Now let’s handle [(A,F)

＊
~
\

(C,H)]∩̃[(B,G)\̃(C,H)]. Let (A,F)

＊
~
\

 (C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A(s)∩C’(s),          s∊F∩H 

Suppose that (B,G)\̃ (C,H)=(W,G), where ∀s∊G; 

 

 



144 

 

                B(s),                      s∊G\H 

W(s)= 

                B(s)∩C’(s),          s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                    s∊F\H 

 T(s)= 

                 V(s)∩W(s),         s∊F∩H 

Therefore, 

                A’(s),                                        s∊(F\H)\G=F∩G’∩H’ 

               A(s)∩C’(s),                               s∊(F∩H)\G=F∩G’∩H 

               A’(s)∩B(s),                               s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∩[B(s)∩C’(s)],                 s∊(F\H)∩(G∩H)=∅ 

              [A(s)∩C’(s)]∩B(s),                    s∊(F∩H)∩(G\H)=∅ 

              [A(s)∩C’(s)]∩[B(s)∩C’(s)],      s∊(F∩H)∩(G∩H)=F∩G∩H         

It is seen that (N,F)=(T,F). 

10) [(A,F)
＊

~
＊

(B,G)] 
~

 ＊ (C,H)=[(A,F)
＊
~
λ

(C,H)]∩̃[(B,G)λ̃(C,H)], where F∩G∩H’=∅.    

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F;   

                  A’(s),                 s∊F\G 

M(s)=  

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F) 
~

 ＊ (C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∪C’(s),      s∊F∩H    

Thus, 

               A’(s),                    s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),          s∊(F∩G)\H=F∩G∩H’ 

              A(s)∪C’(s)             s∊(F\G)∩H=F∩G’∩H 

             [A(s)∩B(s)]∪C’(s)  s∊(F∩G)∩H=F∩G∩H  
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Now let’s handle [(A,F)
＊
~
λ

(C,H)]∩̃[(B,G)λ̃(C,H)]. Let (A,F)
＊
~
λ

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A(s)∪C’(s),          s∊F∩H 

Suppose that (B,G)λ̃(C,H)=(W,G), where ∀s∊G; 

 

 

                B(s),                     s∊G\H 

W(s)= 

                B(s)∪C’(s),          s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                s∊F\H 

T(s)=  

                 V(s)∩W(s),      s∊F∩H 

Thus, 

               A’(s),                                         s∊(F\H)\G=F∩G’∩H’ 

               A(s)∪C’(s),                                s∊(F∩H)\G=F∩G’∩H 

               A’(s)∩B(s),                                s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∩[B(s)∪C’(s)],                  s∊(F\H)∩(G∩H)=∅ 

              [A(s)∪C’(s)]∩B(s),                    s∊(F∩H)∩(G\H)=∅ 

              [A(s)∪C’(s)]∩[B(s)∪C’(s)],       s∊(F∩H)∩(G∩H)=F∩G∩H          

It is seen that (N,F)=(T,F). 

11) [(A,F)
＊

~
＊

(B,G)]∩̃(C,H)=[(A,F)

＊
~
γ

(C,H)]∪̃[(B,G)

＊
~
γ

(C,H)] 

Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)∩̃(C,H)=(N,F), where ∀s∊F; 
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                M(s),              s∊F\H     

N(s)= 

                M(s)∩C(s),    s∊F∩H    

Thus,  

               A’(s),                          s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),                s∊(F∩G)\H=F∩G∩H’ 

               A’(s)∩C(s)                 s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∪B’(s)]∩C(s)      s∊(F∩G)∩H=F∩G∩H    

Now let’s handle [(A,F)

＊
~
γ

(C,H)]∪̃[(B,G)

＊
~
γ

(C,H)]. Let (A,F)

＊
~
γ

(C,H)=(V,F), where ∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A’(s)∩C(s),          s∊F∩H 

Suppose that (B,G)

＊
~
γ

(C,H)=(W,G), where ∀s∊G; 

               B’(s),                    s∊G\H 

W(s)= 

                B’(s)∩C(s),          s∊G∩H 

Let (V,F)∪̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                    s∊F\H 

T(s)=  

                V(s)∪W(s),          s∊F∩H 

Thus, 

                A’(s),                                         s∊(F\H)\G=F∩G’∩H’ 

                A’(s)∩C(s),                               s∊(F∩H)\G=F∩G’∩H 

                A’(s)∪B’(s),                              s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∪[B’(s)∩C(s)],                   s∊(F\H)∩(G∩H)=∅ 

              [A’(s) ∩C(s)]∪B’(s),                  s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∩C(s)]∪ [B’(s)∩C(s)],      s∊(F∩H)∩(G∩H)=F∩G∩H         

It is seen that (N,F)=(T,F). 

12) [(A,F)
＊

~
＊

(B,G)]∪̃(C,H)=[(A,F)

＊
~
+

(C,H)]∪̃[(B,G)

＊
~
+

(C,H)] 
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Proof: Let (A,F)
＊

~
＊

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∪B’(s),      s∊F∩G 

Let (M,F)∪̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M(s)∪C(s),       s∊F∩H    

Thus, 

 

               A’(s),                          s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∪B’(s),                s∊(F∩G)\H=F∩G∩H’ 

               A’(s)∪C(s),                s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∪B’(s)]∪C(s),    s∊(F∩G)∩H=F∩G∩H    

Now let’s handle [(A,F)

＊
~
+

(C,H)]∪̃[(B,G)

＊
~
+

(C,H)].Let (A,F)

＊
~
+

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A’(s)∪C(s),          s∊F∩H 

Suppose that (B,G)

＊
~
+

(C,H)=(W,G), where ∀s∊G; 

                B’(s),                      s∊G\H 

W(s)= 

                B’(s)∪C(s),            s∊G∩H 

Let (V,F)∪̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                      s∊F\H 

T(s)=  

                 V(s)∪W(s),           s∊F∩H 

Thus, 
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                A’(s),                                          s∊(F\H)\G=F∩G’∩H’ 

               A’(s)∪C(s),                                 s∊(F∩H)\G=F∩G’∩H 

               A’(s)∪B’(s),                                s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∪[B’(s)∪C(s)],                    s∊(F\H)∩(G∩H)=∅ 

              [A’(s)∪C(s)]∪B’(s),                     s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∪C(s)]∪ [B’(s)∪C(s)],        s∊(F∩H)∩(G∩H)=F∩G∩H         

It is seen that (N,F)=(T,F). 

3.1.2. Distribution of soft binary piecewise operations over complementary soft 

binary piecewise theta operation: 

1) (A,F)+̃[(B,G)
＊

~
θ

(C,H)]=[(A,F)
~

 ＊(B,G)]∩̃[(C,H)
~

 ＊(A,F)], where F∩G’∩H=∅. 

  Proof: Let (B,G)
＊
~
θ

(C,H)=(M,G), where ∀s∊G; 

                 B’(s),               s∊G\H 

M(s)= 

                 B’(s)∩C’(s),    s∊G∩H 

Let (A,F)+̃(M,G)=(N,F), where ∀s∊F; 

                 A(s),                 s∊F\G       

N(s)= 

                 A’(s)∪M(s),    s∊F∩G           

Thus, 

                 A(s),                             s∊F\G  

N(s)=      A’(s)∪B’(s),                  s∊F∩(G\H)=F∩G∩H’              

                A’(s)∪[(B’(s)∩C’(s)],  s∊F∩(G∩H)=F∩G∩H        

Now let’s handle [(A,F)
~

 ＊ (B,G)]∩̃[(C,H)
~

 ＊(A,F)]. Let (A,F)
~

 ＊(B,G)=(V,F), where 

∀s∊F; 

               A(s),                  s∊F\G 

V(s)= 

               A’(s)∪B’(s),       s∊F∩G  

Suppose that (C,H)
~

 ＊(A, F)=(W,H), where ∀s∊H; 
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                 C(s),                       s∊H\F 

W(s)= 

                C’(s)∪A’(s),           s∊H∩F 

Let (V,F)∩̃(W,H)=(T,F), where ∀s∊F 

                V(s),                      s∊F\H 

T(s)=         

                V(s)∩W(s),          s∊F∩H     

Thus, 

 

               A(s),                                          s∊(F\G)\H=F∩G’∩H’ 

               A’(s)∪B’(s),                              s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s),                                 s∊(F\G)∩(H\F)=∅ 

T(s)=     A(s)∩[C’(s)∪A’(s)],                   s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A’(s)∪B’(s)]∩C(s),                   s∊(F∩G)∩(H\F)=∅ 

              [A’(s)∪B’(s)]∩[C’(s)∪A’(s)],    s∊(F∩G)∩(H∩F)=F∩G∩H   

Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

2) [(A,F)
＊
~
θ

(B,G)]+̃(C,H)=[(A,F)
＊
~
∪

(C,H)]∪̃[(B,G)∪̃(C,H)], where F∩G∩H’=∅. 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),      s∊F∩G 

Let (M,F)+̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∪C(s),      s∊F∩H    

               A’(s),                       s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),             s∊(F∩G)\H=F∩G∩H’ 

               A(s)∪C(s)                s∊(F\G)∩H=F∩G’∩H 

             [A(s)∪B(s)]∪C(s)      s∊(F∩G)∩H=F∩G∩H  
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Now let’s handle [(A,F)
＊
~
∪

(C,H)]∪̃[(B,G)∪̃(C,H)]. Let (A,F)
＊
~
∪

 (C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A(s)∪C(s),            s∊F∩H 

Suppose that (B,G)∪̃(C,H)=(W,G), where ∀s∊G; 

                B(s),                    s∊G\H 

W(s)= 

                 B(s)∪C(s),          s∊G∩H 

Let (V,F)∪̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                   s∊F\H 

T(s)= 

                V(s)∪W(s),          s∊F∩H 

Hence, 

              A’(s),                                       s∊(F\H)\G=F∩G’∩H’ 

              A(s)∪C(s),                               s∊(F∩H)\G=F∩G’∩H 

              A’(s)∪B(s),                              s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∪[B(s)∪C(s)],                 s∊(F\H)∩(G∩H)=∅ 

              [A(s)∪C(s)]∪B(s),                   s∊(F∩H)∩(G\H)=∅ 

              [A(s)∪C(s)]∪ [B(s)∪C(s)],      s∊(F∩H)∩(G∩H)=F∩G∩H        

It is seen that (N,F)=(T,F). 

3) (A,F)γ̃[(B,G)
＊
~
θ

(C,H)]=[(A,F)
~
 θ(B,G)]∩̃[(C,H)

~
 θ(A,F)], where F∩G’∩H=∅. 

  Proof: Let (B,G)
＊
~
θ

(C,H)=(M,G), where ∀s∊G; 

                 B’(s),                 s∊G\H 

M(s)= 

                 B’(s)∩C’(s),     s∊G∩H 

Let (A,F)
~
 γ(M,G)=(N,F), where  ∀s∊F; 
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                 A(s),                    s∊F\G       

 N(s)= 

                 A’(s)∩M(s),      s∊F∩G           

Thus, 

                 A(s),                              s∊F\G  

 N(s)=      A’(s)∩B’(s),                  s∊F∩(G\H)=F∩G∩H’              

                A’(s)∩[(B’(s)∩C’(s)],   s∊F∩(G∩H)=F∩G∩H        

Now let’s handle [(A,F)
~
 θ(B,G)]∩̃[(C,H)

~
 θ(A,F)]. Let (A,F)

~
 θ(B,G)=(V,F), where 

∀s∊F; 

               A(s),                   s∊F\G 

V(s)= 

               A’(s)∩B’(s),      s∊F∩G  

Suppose that (C,H)
~
 θ(A,F)=(W,H), where ∀s∊H; 

 

                C(s),                        s∊H\F 

W(s)= 

                C’(s)∩A’(s),           s∊H∩F 

Let (V,F)∩̃(W,H)=(T,F)  ∀s∊F; 

                 V(s),                    s∊F\H 

T(s)= 

                  V(s)∩W(s),        s∊F∩H 

Thus,  

               A(s),                                           s∊(F\G)\H=F∩G’∩H’ 

               A’(s)∩B’(s),                              s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s),                                 s∊(F\G)∩(H\F)=∅ 

T(s)=      A(s)∩[C’(s)∩A’(s)],                  s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A’(s)∩B’(s)]∩C(s),                   s∊(F∩G)∩(H\F)=∅ 

              [A’(s)∩B’(s)]∩[C’(s)∩A’(s)],   s∊(F∩G)∩(H∩F)=F∩G∩H 

Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

4) [(A,F)
＊
~
θ

(B,G)]γ̃(C,H)=[(A,F)
＊

~
∩

(C,H)]∪̃[(B,G)
＊

~
∩

(C,H)], where F∩G∩H’=∅. 
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Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),      s∊F∩G 

Let (M,F)θ̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∩C(s),     s∊F∩H    

Thus, 

               A’(s),                          s∊(F\G) \H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),               s∊(F∩G)\H=F∩G∩H’ 

               A(s)∩C(s)                  s∊(F\G)∩H=F∩G’∩H 

             [A(s)∪B(s)]∩C(s)       s∊(F∩G)∩H=F∩G∩H    

Now let’s handle [(A,F)
＊

~
∩

(C,H)]∪̃[(B,G)
＊

~
∩

(C,H)]. Let (A,F)
＊

~
∩

(C,H)=(V,F), where 

∀s∊F; 

 

               A’(s),                    s∊F\H 

V(s)= 

               A(s)∩C(s),            s∊F∩H 

Suppose that (B,G)
＊

~
∩

(C,H)=(W,G), where ∀s∊G; 

                B’(s),                    s∊G\H 

W(s)= 

                B(s)∩C(s),           s∊G∩H 

Let (V,F)∪̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                    s∊F\H 

T(s)= 

                 V(s)∪W(s),         s∊F∩H 

Hence, 
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              A’(s),                                          s∊(F\H)\G=F∩G’∩H’ 

              A(s)∩C(s),                                  s∊(F∩H)\G=F∩G’∩H 

              A’(s)∪B’(s),                               s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∪[B(s)∩C(s)],                    s∊(F\H)∩(G∩H)=∅ 

              [A(s)∩C(s)]∪B’(s),                    s∊(F∩H)∩(G\H)=∅ 

              [A(s)∩C(s)]∪ [B(s)∩C(s)],        s∊(F∩H)∩(G∩H)=F∩G∩H       

It is seen that (N,F)=(T,F). 

5) (A,F)
~
\ [(B,G)

＊
~
θ

(C,H)]=[(A,F)∩̃(B,G)]∪̃[(C,H)∩̃(A,F)]. 

Proof: Let (B,G)
＊

~
θ

(C,H)=(M,G), where ∀s∊G;  

                 B’(s),                 s∊G\H 

M(s)= 

                 B’(s)∩C’(s),      s∊G∩H 

Let (A,F)\̃(M,G)=(N,F), where  ∀s∊F; 

                 A(s),                 s∊F\G       

 N(s)= 

                 A(s)∩M’(s),     s∊F∩G           

Thus, 

                 A(s),                         s∊F\G  

N(s)=       A(s)∩B(s),                s∊F∩(G\H)=F∩G∩H’              

                A(s)∩[(B(s)∪C(s)],   s∊F∩(G∩H)=F∩G∩H        

Now let’s handle [(A,F)∩̃(B,G)]∪̃[(C,H)∩̃(A,F)]. Let (A,F)∩̃((B,G)=(V,F), where 

∀s∊F; 

               A(s),                      s∊F\G 

V(s)= 

               A(s)∩B(s),           s∊F∩G   

Suppose that (C,H)∩̃(A,F)=(W,H), where ∀s∊H; 

                C(s),                 s∊H\F 

W(s)= 

                C(s)∩A(s),       s∊H∩F 

Let (V,F)∪̃(W,H)=(T,F)  ∀s∊F; 
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                 V(s),                     s∊F\H 

T(s)= 

                 V(s)∪W(s),          s∊F∩H     

Thus,  

               A(s),                                          s∊(F\G)\H=F∩G’∩H’ 

              A(s)∩B(s),                                 s∊(F∩G)\H=F∩G∩H’ 

              A(s)∪C(s),                                 s∊(F\G)∩(H\F)=∅ 

T(s)=     A(s)∪[C(s)∩A(s)],                     s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A(s)∩B(s)]∪C(s),                     s∊(F∩G)∩(H\F)=∅ 

              [A(s)∩B(s)]∪[C(s)∩A(s)],         s∊(F∩G)∩(H∩F)=F∩G∩H 

              A(s),                                            s∊(F\G)\H=F∩G’∩H’ 

              A(s)∩B(s),                                  s∊(F∩G)\H=F∩G∩H ’ 

              A(s)∪C(s),                                  s∊(F\G)∩(H \F)=∅ 

T(s)=     A(s)                                             s∊(F\G)∩(H∩F)=F∩G’∩H 

              [A(s)∩B(s)]∪C(s),                      s∊(F∩G)∩(H\F)=∅ 

              [A(s)∩B(s)]∪[C(s)∩A(s)],         s∊(F∩G)∩(H∩F)=F∩G∩H         

Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

6) [(A,F)
＊
~
θ

(B,G)]\̃(C,H)=[(A,F)
＊
~
θ

(C,H)]∩̃[(B,G)
＊
~
θ

(C,H)]. 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),      s∊F∩G 

Let (M,F)\̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M(s)∩C’(s),     s∊F∩H    

Thus, 

               A’(s),                            s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),                 s∊(F∩G)\H=F∩G∩H’ 

               A’(s)∩C’(s),                s∊(F\G)∩H=F∩G’∩H 
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             [A’(s)∩B’(s)]∩C’(s),    s∊(F∩G)∩H=F∩G∩H    

Now let’s handle [(A,F)
＊
~
θ

(C,H)]∩̃[(B,G)
＊
~
θ

(C,H)]. Let (A,F)
＊
~
θ

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                 s∊F\H 

V(s)= 

               A’(s)∩C’(s),      s∊F∩H 

Suppose that (B,G)
＊
~
θ

(C,H)=(W,G), where ∀s∊G; 

                B’(s),                    s∊G\H 

W(s)= 

                B’(s)∩C’(s),         s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀ s∊F 

                 V(s),                    s∊F\H     

 T(s)= 

                 V(s)∩W(s),         s∊F∩H 

Thus, 

               A’(s),                                         s∊(F\H)\G=F∩G’∩H’ 

              A’(s)∩C’(s),                               s∊(F∩H)\G=F∩G’∩H 

              A’(s)∩B’(s),                               s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∩[B’(s)∩C’(s)],                 s∊(F\H)∩(G∩H)=∅ 

              [A’(s)∩C’(s)]∩B’(s),                  s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∩C’(s)]∩[B’(s)∩C’(s)],    s∊(F∩H)∩(G∩H)=F∩G∩H          

It is seen that (N,F)=(T,F). 

7) (A,F)�̃�[(B,G)
＊
~
θ

(C,H)]=[(A,F)∪̃(B,G)]∪̃[(C,H)∪̃A,F)], where F∩G’∩H=∅. 

Proof: Let (B,G)
＊
~
θ

(C,H)=(M,G), where ∀s∊G; 

                 B’(s),                 s∊G\H 

M(s)= 

                 B’(s)∩C’(s),     s∊G∩H 

Let (A,F)�̃�(M,G)=(N,F), where  ∀s∊F; 
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                 A(s),                 s∊F\G       

 N(s)= 

                 A(s)∪M’(s),     s∊F∩G           

                 A(s),                          s∊F\G  

 N(s)=      A(s)∪B(s),                 s∊F∩(G\H)=F∩G∩H’              

                A(s)∪[(G(s)∪C(s)],   s∊F∩(G∩H)=F∩G∩H        

Now let’s handle  [(A,F) ∪̃(B,G)]∪̃[(C,H)∪̃(A,F)]. Let (A,F)∪̃(B,G)=(V,F), where 

∀s∊F; 

               A(s),                      s∊F\G 

V(s)= 

               A(s)∪B(s),           s∊F∩G  

Suppose that (C,H)∪̃A,F)=(W,H), where ∀s∊H; 

                C(s),                    s∊H\F 

W(s)= 

                C(s)∪A(s),            s∊H∩F 

Let (V,F)∪̃(W,H)=(T,F), where ∀s∊F; 

                 V(s),                    s∊F\H 

T(s)= 

                V(s)∪W(s),          s∊F∩H 

Thus, 

              A(s),                                            s∊(F\G)\H=F∩G’∩H’ 

              A(s)∪B(s),                                  s∊(F∩G)\H=F∩G∩H’ 

              A(s)∪C(s),                                  s∊(F\G)∩(H\F)=∅ 

T(s)=     A(s)∪[C(s)∪A(s)],                     s∊(F\G)∩(H∩F)=F∩G ’∩H 

              [A(s)∪B(s)]∪C(s),                      s∊(F∩G)∩(H\F)=∅ 

              [A(s)∪B(s)]∪ [C(s)∪A(s)],        s∊(F∩G)∩(H∩F)=F∩G∩H 

Since F\G=F∩G’, if s∊G’, then s∊H\G or s∊(G∪H)’. Hence, if s∊F\G, s∊F∩G’∩H’ or 

s∊F∩G’∩H. Thus, it is seen that (N,F)=(T,F). 

8) [(A,F)
＊
~
θ

(B,G)]λ̃(C,H)=[(A,F)
＊

~
＊

(C,H)]∩̃[(B,G)
＊

~
＊

(C,H)]. 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F; 
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                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),      s∊F∩G 

Let (M,F)�̃�(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M(s)∪C’(s),      s∊F∩H    

               A’(s),                          s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),                s∊(F∩G)\H=F∩G∩H’ 

               A’(s)∪C’(s)                 s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∩B’(s)]∪C’(s)     s∊(F∩G)∩H=F∩G∩H   

Now let’s handle [(A,F)
＊

~
＊

(C,H)]∩̃[(B,G)
＊

~
＊

(C,H)].Let (A,F)
＊

~
＊

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A’(s)∪C’(s),         s∊F∩H 

Suppose that (B,G)
＊

~
＊

(C,H)=(W,B), where ∀s∊G; 

                B’(s),                      s∊G\H 

W(s)= 

                B’(s)∪C’(s),           s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                 s∊F\H 

T(s)= 

                 V(s)∩W(s),      s∊F∩H 

Thus, 

                A’(s),                                     s∊(F\H)\G=F∩G’∩H’ 

               A’(s)∪C’(s),                           s∊(F∩H)\G=F∩G’∩H 

               A’(s)∩B’(s),                           s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∩[B’(s)∪C’(s)],              s∊(F\H)∩(G∩H)=∅ 

              [A’(s)∪C’(s)]∩B’(s),              s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∪C’(s)]∩[B’(s)∪C’(s)],  s∊(F∩H)∩(G∩H)=F∩G∩H         
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It is seen that (N,F)=(T,F). 

9) [(A,F)
＊
~
θ

(B,G)]θ̃(C,H)=[(A,F)

＊
~
\

(C,H)]∪̃[(B,G)\̃(C,H)], where F∩G∩H’=∅ 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                   A’(s)∩B’(s),     s∊F∩G 

Let (M,F)θ̃(C,H)=(N,F), where ∀s∊F; 

 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∩C’(s),     s∊F∩H    

Thus, 

               A’(s),                          s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),               s∊(F∩G)\H=F∩G∩H’ 

              A(s)∩C’(s),                 s∊(F\G)∩H=F∩G’∩H 

             [A(s)∪B(s)]∩C’(s),      s∊(F∩G)∩H=F∩G∩H    

Now let’s handle [(A,F)

＊
~
\

(C,H)]∪̃[(B,G)\̃(C,H)]. Let (A,F)

＊
~
\

 (C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A(s)∩C’(s),          s∊F∩H 

Suppose that (B,G)\̃ (C,H)=(W,G), where ∀s∊G; 

                B(s),                      s∊G\H 

W(s)= 

                B(s)∩C’(s),          s∊G∩H 

Let (V,F)∪̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                      s∊F\H 

 T(s)= 

                 V(s)∪W(s),          s∊F∩H 
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Thus, 

              A’(s),                                          s∊(F\H)\G=F∩G’∩H’ 

              A(s)∩C’(s),                                s∊(F∩H)\G=F∩G’∩H 

              A’(s)∪B(s),                                s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∪[B(s)∩C’(s)],                   s∊(F\H)∩(G∩H)=∅ 

              [A(s)∩C’(s)]∪B(s),                    s∊(F∩H)∩(G\H)=∅ 

              [A(s)∩C’(s)]∪ [B(s)∩C’(s)],     s∊(F∩H)∩(G∩H)=F∩G∩H       

It is seen that (N,F)=(T,F). 

10) [(A,F)
＊
~
θ

(B,G)] 
~

 ＊ (C,H)=[(A,F)
＊
~
λ

(C,H)]∪̃[(B,G)λ̃(C,H)], where F∩G∩H’=∅. 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F;   

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),      s∊F∩G 

Let (M,F) 
~

 ＊ (C,H)=(N,F), where ∀s∊F, 

                M(s),                 s∊F\H     

N(s)= 

                M’(s)∪C’(s),    s∊F∩H    

Thus, 

               A’(s),                          s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),                s∊(F∩G)\H=F∩G∩H’ 

              A(s)∪C’(s),                  s∊(F\G)∩H=F∩G’∩H 

             [A(s)∪B(s)]∪C’(s),      s∊(F∩G)∩H=F∩G∩H   

Now let [(A,F)
＊
~
λ

(C,H)]∪̃[(B,G)λ̃(C,H)]. Let (A,F)
＊
~
λ

(C,H)=(V,F), where ∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A(s)∪C’(s),          s∊F∩H 

Suppose that (B,G)λ̃ (C,H)=(W,G), where ∀s∊G; 
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                B(s),                     s∊G\H 

W(s)= 

               B(s)∪C’(s),           s∊G∩H 

Let (V,F)∪̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                   s∊F\H 

T(s)= 

                 V(s)∪W(s),        s∊F∩H 

Hence, 

              A’(s),                                           s∊(F\H)\G=F∩G’∩H’ 

              A(s)∪C’(s),                                 s∊(F∩H)\G=F∩G’∩H 

              A’(s)∪B(s),                                 s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∪[B(s)∪C’(s)],                   s∊(F\H)∩(G∩H)=∅ 

              [A(s)∪C’(s)]∪B(s),                    s∊(F∩H)∩(G\H)=∅ 

              [A(s)∪C’(s)]∪ [B(s)∪C’(s)],      s∊(F∩H)∩(G∩H)=F∩G∩H        

It is seen that (N,F)=(T,F). 

11) [(A,F)
＊
~
θ

(B,G)]∩̃(C,H)=[(A,F)

＊
~
γ

(C,H)]∩̃[(B,G)

＊
~
γ

(C,H)]. 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),      s∊F∩G 

Let (M,F)∩̃(C,H)=(N,F), where ∀s∊F; 

                M(s),                 s∊F\H     

N(s)= 

                M(s)∩C(s),      s∊F∩H    

Thus, 

              A’(s),                           s∊(F\G)\H=F∩G’∩H’ 

N(s)=    A’(s)∩B’(s),                 s∊(F∩G)\H=F∩G∩H’ 

             A’(s)∩C(s)                   s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∩B’(s)]∩C(s)     s∊(F∩G)∩H=F∩G∩H   
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Now let’s handle [(A,F)

＊
~
γ

(C,H)]∩̃[(B,G)

＊
~
γ

(C,H)]. Let (A,F)

＊
~
γ

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H  

V(s)= 

               A’(s)∩C(s),          s∊F∩H 

Suppose that (B,G)

＊
~
γ

(C,H)=(W,G), where ∀s∊G; 

                B’(s),              s∊G\H 

W(s)= 

                B’(s)∩C(s),    s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                    s∊F\H 

T(s)= 

                 V(s)∩W(s),         s∊F∩H  

Hence, 

               A’(s),                                       s∊(F\H)\G=F∩G’∩G’ 

               A’(s)∩C(s),                             s∊(F∩H)\G=F∩G’∩H 

               A’(s)∩B’(s),                            s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=      A’(s)∩[B’(s)∩C(s)],                s∊(F\H)∩(G∩H)=∅ 

              [A’(s)∩C(s)]∩B’(s),                 s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∩C(s)]∩[B’(s)∩C(s)],     s∊(F∩H)∩(G∩H)=F∩G∩H         

It is seen that (N,F)=(T,F). 

12) [(A,F)
＊
~
θ

(B,G)]∪̃(C,H)=[(A,F)

＊
~
+

(C,H)]∩̃[(B,G)

＊
~
+

(C,H)]. 

Proof: Let (A,F)
＊
~
θ

(B,G)=(M,F), where ∀s∊F; 

                  A’(s),                 s∊F\G 

M(s)= 

                  A’(s)∩B’(s),     s∊F∩G 

Let (M,F)∪̃(C,H)=(N,F), where ∀s∊F; 
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                M(s),                 s∊F\H     

N(s)= 

                M(s)∪C(s),       s∊F∩H    

              A’(s),                          s∊(F\G)\H=F∩G’∩H’ 

N(s)=     A’(s)∩B’(s),               s∊(F∩G)\H=F∩G∩H’ 

              A’(s)∪C(s),                 s∊(F\G)∩H=F∩G’∩H 

             [A’(s)∩B’(s)]∪C(s),    s∊(F∩G)∩H=F∩G∩H    

Now let’s handle [(A,F)

＊
~
+

(C,H)]∩̃[(B,G)

＊
~
+

(C,H)]. Let (A,F)

＊
~
+

(C,H)=(V,F), where 

∀s∊F; 

               A’(s),                    s∊F\H 

V(s)= 

               A’(s)∪C(s),          s∊F∩H 

Suppose that (B,G)

＊
~
+

(C,H)=(W,G), where ∀s∊G; 

                B’(s),                s∊G\H 

W(s)= 

                B’(s)∪C(s),       s∊G∩H 

Let (V,F)∩̃ (W,H)=(T,F), where ∀s∊F; 

                 V(s),                      s∊F\H 

T(s)= 

                 V(s)∩W(s),           s∊F∩H 

              A’(s),                                         s∊(F\H)\G=F∩G’∩H’ 

              A’(s)∪C(s),                                s∊(F∩H)\G=F∩G’∩H 

              A’(s)∩B’(s),                              s∊(F\H)∩(G\H)=F∩G∩H’ 

T(s)=     A’(s)∩[B’(s)∪C(s)],                  s∊(F\H)∩(G∩H)=∅ 

              [A’(s)∪C(s)]∩B’(s),                  s∊(F∩H)∩(G\H)=∅ 

              [A’(s)∪C(s)]∩[B’(s)∪C(s)],      s∊(F∩H)∩(G∩H)=F∩G∩H        

It is seen that (N,F)=(T,F). 

 

4. Conclusion 

In this paper, we explore more about soft binary piecewise theta and star operation by 

examining  the relationships between this soft set operation and other types of soft set 
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operations. In this paper, it is aimed to contribute to the soft set literature by obtaining the 

distributions of soft binary piecewise operations over soft binary piecewise theta  and star 

operations with complement. This paper is a theoretical study of soft sets and some future 

studies may continue by defining and examining some other distribution rules.  For future 

studies, this research is to serve as a basis for many applications, especially decision making 

cryptography. Since soft set is a powerful mathematical tool for uncertain object detection, with 

this study,  researchers may suggest some new encryption based on soft sets. 
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