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 In this study, the nonlocal transformation methods applied to the nonlinear 

differential equations and the first integrals obtained by using these 

transformations are examined. It is shown that the linearized equations by these 

nonlocal transformations can be integrated by the first integrals. Then, the 

force-free Duffing-van der Pol oscillator equation is considered, and it is 

demonstrated this equation with a specific nonlinear term is integrable. To do 

them, first, this equation is classified by using special functions. Then, an 

effective procedure is emphasized to obtain a nonlocal transformation pair 

called Sundman. The Sundman transformation pair is found by concerning this 

classification. The first integrals of this equation are acquired by this Sundman 

transformation pair.  
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 Bu çalışmada, lineer olmayan diferansiyel denklemlere uygulanan yerel 

olmayan dönüşüm yöntemleri ve bu dönüşümler kullanılarak elde edilen ilk 

integraller incelenmiştir. Bu yerel olmayan dönüşümler ile lineerleştirilen 

denklemlerin ilk integraller yardımıyla integre edilebileceği gösterilmiştir. 

Daha sonra, Duffing-van der Pol denklemi ele alınmış ve lineer olmayan özel 

bir terime sahip olan bu denklemin integrallenebilir olduğu kanıtlanmıştır. Bu 

işlemleri yapabilmek için önce bu denklem özel fonksiyonlar kullanılarak 

sınıflandırılmış, sonra Sundman adı verilen yerel olmayan bir dönüşüm çifti 

elde etmek için etkili bir yaklaşım açıklanarak, bu sınıflandırmaya karşılık 

gelen Sundman dönüşüm çifti hesaplanmıştır. Son olarak, bu denklemin ilk 

integralleri, elde edilen Sundman dönüşüm çifti kullanılarak bulunmuştur. 
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Introduction  

Many researchers have a significant interest in linearization through a transformation involving 

nonlocal terms in recent years (Duarte, Moreira and Santos, 1994; Chandrasekar, Senthilvelan and 

Lakshmanan, 2005). One of the nonlocal transformations is given as  
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𝑋 = 𝐹(𝑡, 𝑥),        𝑑𝑇 = 𝐺(𝑡, 𝑥)𝑑𝑡,                                                                             (1) 

which is called the generalized Sundman transformation (Euler 2003; Euler 2004). Here 𝐹 and 

𝐺 are arbitrary smooth functions. This transformation is called S-transformation, and the 

equations that can be linearized by using S-transformation are called S-linearizable (Muriel and 

Romero, 2009). Duarte et al. (Duarte, Moreira and Santos, 1994) show that S-linearizable 

equations should be in the following form 

�̈�+ 𝑎2(t,x) �̇�2+𝑎1(t,x) �̇�+𝑎0(t,x)=0.                                                                              (2) 

Nonlinear equations can be transformed into S-linearizable with these nonlocal 

transformations, and then, S-transformation pairs of S-linearizable equations can be found. 

Moreover, the first integrals of the equations can be obtained by using these S-transformation pairs. 

The first integrals and solutions of nonlinear equations are interesting in enormous attention 

in the literature since these equations are essential in applied mathematics, physics, and 

engineering problems (Orhan and Özer, 2016). Sundman transformations have different 

generalizations in the literature (Chandrasekar, Senthilvelan and Lakshmanan, 2006). In addition, 

using generalized Sundman transformation (1), Sundman symmetries can be obtained (Euler and 

Euler, 2004).  

In order to obtain first integrals, different methods are introduced by many authors, and are 

given as follows; Noether theorem (Noether, 1971), linearization methods (Duarte, Moreira and 

Santos, 1994; Chandrasekar, Senthilvelan and Lakshmanan, 2005), variational derivatives 

(Ibragimov, 2006), Lie symmetries (Ashyralyev, Dal and Pınar, 2011; Kopçasız and Yaşar, 2022) 

and symmetry methods (Orhan and Özer, 2016). One of these feasible methods to derive the first 

integrals is obtaining transformation pairs, and many methods are defined to find transformation 

pairs.  

There are two types of differential equations the linear and nonlinear differential equations. 

Finding exact solutions to linear equations can be easier than finding solutions to nonlinear 

differential equations. Moreover, finding solutions for nonlinear differential equations is more 

complex than obtaining numerical solutions to nonlinear differential equations and analytic 

solutions to linear equations. Therefore, getting exact solutions is easier if the nonlinear differential 

equations can be converted to linear ones. The nonlinear differential equations can be transformed 

into linear equations by using transformation pair, so they could be linearized.  

Our aim in this research, we investigate the first integrals of the force-free Duffing-van der 

Pol equation by applying the generalized Sundman transformation method to this equation. To 
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construct them, firstly, we will find the Sundman pair by applying the necessary procedure 

according to the classified equation and appropriate classification. Then, the first integrals are 

obtained by using this pair of transformation. The studies in literature show that the general form 

of the first integral for the force-free Duffing-van der Pol equation, which we discuss in this study, 

is not obtained. Since this equation contains the cubic nonlinear term, which means that its exact 

solutions could not be found, so the study about the absence of these solutions is given as follows 

(Panayotounakos et al., 2003). 

Duffing-van der Pol equation does not have the first integral containing arbitrary 

functions and analytical solutions. Chandarasker et al. obtained the first integral by considering 

with special choices for 𝛼 = 4/ 𝛽  and 𝛼 = −3/𝛽2 for the arbitrary functions which are 

accounted in the equation.  

In this study, we obtain the first integrals for the general form of these types of functions 

without making any special selections for arbitrary functions. The first integral for the general 

form of this equation has not been obtained yet. If one more transformation is performed with 

the help of the first integral obtained, analytical solutions for the general form of the equation 

can also be found. 

 

The Method for Constructing Transformation Pairs  

In this section, we investigate the S-transformation pairs and S-linearizable equations. It 

is known that these equations have first integral in form   

A(t, x)�̇� +  B(t, x).  (3) 

Equation (2) is linearized by using these first integrals, and to perform it; we classify 

equations to derive the first integrals in this form. To classify the equation, these functions are 

defined as 

𝑆1(𝑡, 𝑥) = 𝑎1𝑥 − 2𝑎2𝑡,  (4) 

𝑆2(𝑡, 𝑥) = (𝑎0𝑎2+𝑎0𝑥)𝑥 + (𝑎2𝑡−𝑎1𝑥)𝑡 + (𝑎2𝑡−𝑎1𝑥)𝑎1. (5) 
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After these definitions, the function 𝑆1(𝑡, 𝑥) is computed; if 𝑆1 = 0, then the function  𝑆2 

should be zero. If the function 𝑆1 ≠ 0, then two different functions should be used. These can 

be given  

𝑆3(𝑡, 𝑥) = (
𝑆2

𝑆1
)

𝑥
− (𝑎2𝑡−𝑎1𝑥), (6) 

𝑆4(𝑡, 𝑥) = (
𝑆2

𝑆1
)

𝑡

+ (
𝑆2

𝑆1
)

2

+ 𝑎1   (
𝑆2

𝑆1
) + 𝑎0𝑎2+𝑎0𝑥 

(7) 

If the function 𝑆3 is computed as zero for these two new functions, then it is seen that 

𝑆4 = 0. Two different linearizing procedures are used with respect to this classification, and the 

appropriate procedure is chosen for the considered equation according to obtaining 

classification results. We investigate the following propositions to explain these procedures that 

give first integrals by nonlocal transformations (Muriel and Romero, 2010). 

Theorem 1: The equation (2) has Sundman transformation pair if and only if it has a first 

integral as A(t, x)�̇� + B(t, x). 

If an Sundman transformation pair is known then a first integral can be determined of (2). On 

the other hand, if a first integral of (2) is known, then an Sundman transformation pair can be 

constructed. 

Theorem 2: We take equation (2) and 𝑆1 is calculated. The analysis of these functions leads us 

to consider two cases: 

Case I: We suppose that 𝑆1 = 0 and then equation (2) has transformation pair (1) if 𝑆2 = 0. 

Case II: Let 𝑆1 ≠ 0; in this situation equation (2) has transformation pair (1) if 𝑆3 = 0 and  

𝑆4 = 0. 

Approaches give Sundman transformation pair under these cases are presented like this: 

Case I: If 𝑆1 = 𝑆2 = 0. 

In order to find transformation pair of (2), firstly the function 𝑓 is defined by 

𝑓(𝑡, 𝑥) = 𝑎0 𝑎2+  𝑎0𝑥 −
1

2
𝑎1𝑥 −

1

4
𝑎1

2.       (8) 

The function 𝑤(𝑡) is a solution of the following equations 

𝑤𝑡 + 𝑤2 + 𝑓 = 0,      (9) 

𝑤𝑥 = 0.      (10) 

The function 𝐶 is a solution of the system 
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𝐶𝑡 = 𝑎0 − 𝐶(𝑡, 𝑥) (
𝑎1

2
+ 𝑤(𝑡)), 

       (11) 

𝐶𝑥 = (𝑎1/2 − 𝑤(𝑡)) − 𝐶(𝑡, 𝑥)𝑎2.        (12) 

𝑃 is determined by solving following equations 

𝑃𝑡 =
1

2
𝑎1,    and       𝑃𝑥 = 𝑎2.        (13) 

𝐹 is derived from 

𝐹𝑡 = 𝐶𝐹𝑥  

(14) 

The function 𝐺 is yielded by 

𝐺 = 𝐹𝑥  𝑒(−𝑃−∫ 𝑤(𝑡)𝑑𝑡 ). (15) 

Thus, S-transformation pair 𝐹 and 𝐺 are found. 

Moreover, the coefficients 𝐴 and 𝐵 are computed as 

𝐴(𝑡, 𝑥) =
𝐹𝑥

𝐺
    and     𝐵(𝑡, 𝑥) =

𝐹𝑡

𝐺
  (16) 

Hence, the first integrals of the equation (2) are yielded.  

Case II: 𝑆1 ≠ 0 and 𝑆3 = 𝑆4 = 0. 

For this case, the function 𝐶 is obtained by using the following equations 

𝐶𝑡 = 𝑎0 − 𝐶(𝑡, 𝑥)(𝑎1 + 𝑢(𝑡, 𝑥)), (17) 

𝐶𝑥 = −𝑢(𝑡, 𝑥) − 𝐶(𝑡, 𝑥)𝑎2, (18) 

where 𝑢 is a solution of the following system 

𝑢𝑥 − (𝑎2𝑡 − 𝑎1𝑥) = 0, (19) 

𝑢𝑡 + 𝑢2 + 𝑎1 𝑢 + 𝑎0 𝑎2  + 𝑎0𝑥 = 0. (20) 

Later, we should find the function 𝑃 and to do it, the derivatives are written as 

𝑃𝑡 =
𝑆2

𝑆1
+𝑎1,    and       𝑃𝑥 = 𝑎2. (21) 

And also 𝐹 

𝐹𝑡 = 𝐶𝐹𝑥 .   (22) 

The function 𝐺 is yielded by 
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𝐺 = 𝐹𝑥 𝑒(−𝑃 ) .  (23) 

Thus, S-transformation pair 𝐹 and 𝐺 are found. 

Furthermore, the coefficients 𝐴 and 𝐵 are computed as 

𝐴(𝑡, 𝑥) =
𝐹𝑥

𝐺
    and     𝐵(𝑡, 𝑥) =

𝐹𝑡

𝐺
   (24) 

 

 

Hence, the first integrals of equation (2) are yielded for Case II. 

The coefficients of the first integrals are derived for Case II.  

 

Sundman Transformation Pairs of Force-Free Duffing-van der Pol Equation 

In this section, we give our attention to force-free Duffing-van der Pol equation  

 

�̈� + (𝛼 + 𝛽 𝑥2)�̇� − 𝛾 𝑥 + 𝑥3  = 0,  (25) 

which is second-order ordinary differential equations of the Painlev´e-Gambier classification. 

In this equation, x is the position coordinate which is a function of the time t, and 𝛾 is 

a scalar parameter demonstrating the damping's nonlinearity and strength (Van der Pol, 1922). 

DvdP equation is an autonomous equation expressing voltage pulses' dispersion along a 

neuronal axon. 

DvdP equation has received a lot of attention recently by many researchers because it 

arises in a model describing the propagation of voltage pulses along a neuronal axon. Generally, 

non-integrability properties have been discussed because the forced version of equation (25) 

displays a rich diversity. We have different forms of DvdP equation according to choices of 

nonlinear terms. If the β is chosen zero, equation (25) becomes the force-free Duffing oscillator 

whose integrability and non-integrability properties, or if the cubic term is absent it becomes 

the standard van der Pol equation. Equation (25) is yielded stable oscillations, renamed 

relaxation oscillations, and its current name is a limit cycle type in electrical circuits using 

vacuum tubes.  

This equation is so famous in many areas, such as physics, biology, sociology and even 

economics, because this equation has not only physical meaning but also biological meaning. 

Therefore, it is used to model electrical circuits on the one hand and to measure the electrical 

potentials of neurons in the stomachs of living things on the other hand.  

Moreover, this equation was used to model the action potentials of neurons (Fitzhugh, 

1961; Nagumo, 1962). Additionally, it is used in seismology as a model of the two plates in a 

geological fault and phonation as a model for the right and left vocal fold oscillations (Lucero 

https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Scalar_(mathematics)
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and Schoentgen, 2013). Thus, earthquake faults with viscous friction can be characterized by 

this equation. 

The analytic solutions of the oscillator equations with nonlinear damping are not still 

explored by researchers, therefore, articles are mostly interested in damped free oscillator 

equations (Mendelson, 1970). In addition to this, Panayotounakos and his collobrates 

demonstrated this equation is not analytic without linear stiffness terms (Panayotounakos et. al, 

2002); so, researchers have investigated for approximate solutions to this equation by using 

numerical methods. The approximate solutions of this equation are obtained by a new homotopy 

perturbation method, the Runge-Kutta method (Khan et al., 2011), and the differential transform 

method (Mukherjee et al., 2011). Then, Chandrasekar et al. (Chandrasekar et al., 2004) 

examined the first integrals and exact solutions of this equation with special choices for 𝛼 =

4/ 𝛽  and 𝛼 = −3/𝛽2. As can be seen from these studies, the first integral was found for some 

special cases, so the first integrals for the general form of DvdP equation have not been found 

previously. The first integral for the general form of this equation (25) is obtained in this article 

by using Sundman transformation pair. The force-free Duffing-van der Pol oscillator equation 

has the following transformation pair 𝐹 and 𝐺 where then this transformation pair can linearize 

equation (25). 

We now apply the procedure examined in the previous section to find the Sundman 

transformation pair, and the first integral of DvdP equation by using them. It is known that we 

should classify this equation with respect to given functions to apply the procedure to classify 

equation (25) by computing the functions 𝑆1,  𝑆2, 𝑆3 and 𝑆4. Here, 𝑆1 = 2𝑎𝑥 is found, and it is 

shown that the function 𝑆1 ≠ 0. Hence, the functions 𝑆3 and 𝑆4 should be equal to zero. We 

calculate these functions to complete classification and find 𝑆3 = 0 and the function 𝑆4 as 

𝑆4 =
9−3𝛼𝛽−𝛽2𝛾

𝛽2
 .                                                                                                          (26) 

Since 𝑆4 should be equal to zero, we suppose that 

9 − 3𝛼𝛽 − 𝛽2𝛾 = 0.                                                                                                                                                                 (27) 

And from (27), the parameter 𝛾 is yielded  

𝛽 =
3(−𝛼+√𝛼2+4𝛾)

2𝛾
                                                                                                                                                                                                                                

(28) 

We can say that equation (25) is classified, and it is in the second class. Hence, case II 

should be applied to this equation to obtain Sundman transformation pair and its first integrals. 

To get them, first we find the function 𝑢(𝑥, 𝑡) as 
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𝑢(𝑥, 𝑡) =
(𝛼2 + 2𝛾 − 𝛼√𝛼2 + 4𝛾)(𝛾 − 3𝑥2)

𝛾(−𝛼 + √𝛼2 + 4𝛾)
. 

(29) 

Using equations (17), (18), the following system is reached 

𝐶𝑡 = −
(−𝛼 + √𝛼2 + 4 𝛾)𝑥(𝛾 − 𝑥2) + 2 𝛾 𝐶[𝑡, 𝑥]

−𝛼 + √𝛼2 + 4 𝛾
, 

(30) 

𝐶𝑥 = −
(𝛼2 + 2 𝛾 − 𝛼√𝛼2 + 4 𝛾)(𝛾 − 3𝑥2)

𝛾(−𝛼 + √𝛼2 + 4𝛾)
 . 

(31) 

If we solve equations (30), (31), the function 𝐶 is derived as 

𝐶(𝑡, 𝑥) = −
(−𝛼 + √𝛼2 + 4 𝛾)(𝛾 𝑥 − 𝑥3)

2 𝛾
+ 𝐻(𝑡). 

                                                                                                                                                                                                                                

(32) 

Thus, the function 𝐹 is obtained as                                                                                                                                                     

𝐹(𝑡, 𝑥) = 𝜑 [
√𝛼2 + 4 𝛾 𝑡 − Log [𝑒𝛼 𝑡 −

𝛾𝑒𝑎𝑡

𝑥2 ]

2 𝛾
]. 

(33) 

We find that the following equations  

                                        

𝑃𝑥 = 0, 

                                                                                                                                                                                                                                

(34) 

𝑃𝑡 =
2 𝛾

−𝛼 + √𝛼2 + 4 𝛾
 . 

(35) 

Hence, the function 𝑃 is constructed                                                                                                                              

𝑃(𝑡) =
2 𝛾 𝑡

−𝛼 + √𝛼2 + 4 𝛾
 

 (36) 

Using obtained functions 𝑃, 𝐹,  𝐶, and 𝑢, the S-transformation pair can be obtained as 

                     

𝐺(𝑡, 𝑥) ==−
ⅇ

𝛼 𝑡− 
2 𝛾 𝑡

−𝛼+√𝛼2+4 𝛾
𝜑′[

√𝛼2+4𝛾𝑡−Log[ⅇ𝛼𝑡−
𝛾 ⅇ𝛼𝑡

𝑥2 ]

2 𝛾
]

(ⅇ𝛼𝑡−
 𝛾ⅇ𝛼𝑡

𝑥2 )𝑥3
. 

                                                                                                                                                                                                                                

 

(37) 
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It can be seen that from the Theorem 1, first integrals are constructed by this transformation 

pair below   

𝐴(𝑡, 𝑥) =
𝐷(𝐹(𝑡,𝑥),𝑥)

𝐺(𝑡,𝑥)
 = 𝑒

2 𝛾 𝑡

−𝛼+√𝛼2+4 𝛾
 

                                                                                                                                                                                                                                

(38) 

𝐵(𝑡, 𝑥) =
𝐷(𝐹(𝑡, 𝑥), 𝑡)

𝐺(𝑡, 𝑥)
=

−𝛼 + √𝛼2 + 4 𝛾 𝑒
1
2

(𝛼+√𝛼2+4 𝛾 )𝑡𝑥(𝛾 − 𝑥2)

2 𝛾
                                                                                                                                                                           

(39) 

Finally, the first integrals of DvdP equation  

𝐼 =
𝑒

1
2

(𝛼+√𝛼2+4 𝛾 )𝑡((−𝛼 + √𝛼2 + 4 𝛾)𝑥(2 𝛾 − 𝑥2) + 2 𝛾𝑥′)

2 𝛾
 . 

(40) 

is obtained. Thus, the general form of the first integral for the Duffing-van der Pol equation is 

found by Sundman transformation pair. 

 

Conclusions  

In this paper, the force-free Duffing-van der Pol equation (25) is considered with 

nonlinear damping. This equation is an autonomous equation expressing the dispersion of 

voltage pulses along a neuronal axon and this problem is highly nonlinear in the sense of a 

mathematical point of view. Also, Sundman transformation pair of DvdP equation is 

investigated. Then, the first integrals in the general form of this equation are derived by obtained 

transformation pair. In order to construct these structures firstly, DvdP equation is 

characterized, and then the transformation can be applied. The first integrals including arbitrary 

parameters of the equation are found by these operations. These first integrals can be classified 

for different choices of arbitrary parameters as well.  

Since the analytic solutions of this equation (25) could not be found, its numerical 

solutions were investigated, and then the first integrals were found for some special cases. First 

integrals for the general form of this equation have not been introduced previously.  

In conclusion, the first integrals which are derived by Sundman transformation pair for 

the general form of DvdP equation are first obtained in this study. This study is important 

because the general form of the first integral for the Duffing-van der Pol equation is obtained 

for the first time in the literature.                                                 
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