OsN\P\NIYH o Kadirli Uygulamal1 Bilimler Fakiiltesi Dergisi Journal of Kadirli Faculty of Applied Sciences

2, Cilt 5, Say 1, 70-105, 2025

<

7
- oS

.
%,

Volume 5, Issue 1, 70-105, 2025

| 6 6
4

UYGULAMALI BILIMLER
FAKULTES| DERGISI

Kadirli Uygulamali Bilimler Journal of Kadirli Faculty of

APPLIED SCIENCES

Fakiiltesi Dergisi Applied Sciences

Solution of Initial Boundary Value Problems for the Nonlinear Stationary Quasi-Optical
Equation with Special Gradient Term

Gabil YAGUB!, Mehmet VURAL?

!Kafkas University Faculty of Science and Literature, Department of Mathematics, Kars Tiirkiye
2Hatay Mustafa Kemal University Faculty of Science and Literature, Department of Mathematics, Hatay Tiirkiye

Ihttps://orcid.org/0000-0002-8343-4087
2https://orcid.org/0000-0002-0977-7479
*Corresponding author: mvural@mku.edu.tr

Research Article

Article History:

Received: 11.01.2025
Accepted: 04.02.2025
Available online: 17.03.2025

Keywords:

Quantum mechanics

Nonlinear quasi-optical equation
Initial boundary value

Problem

Existence and uniquenes
Gradient term analysis

ABSTRACT

This study examines a fundamental problem in quantum mechanics: the
initial boundary value problem for a stationary, nonlinear quasi-optical
equation with a specific gradient. This complex equation, which surpasses
the previously studied nonstationary linear Schrodinger equation, offers
more accurate models of particle behavior at the microscopic level. The
research defines the problem as a first-kind problem, then meticulously
formulates the necessary and sufficient conditions for its solution. Theorems
on the existence and uniqueness of the solution are proven, and an estimate
of the solution is obtained. This work is significant for quantum mechanics
and optics, particularly in understanding electromagnetic wave propagation
when wavelengths are comparable to the optical system’s dimensions. The
findings contribute to optical design and engineering applications, offering
new insights beyond classical physics.

Ozel Gradyent Terimli Dogrusal Olmayan Durgun Kuazi-Optik Denklemi I¢cin Baslangic
Sinir Deger Problemlerinin Coziimii
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Anahtar Kelimeler:

Kuantum mekanigi

Dogrusal olmayan yari-optik
Denklem baslangi¢ sinir degeri
Problem

Varolus ve benzersizlikler
Gradyan terim analizi

Bu ¢aligma, kuantum mekanigindeki temel bir problemi incelemektedir: belirli
bir gradyana sahip duragan, dogrusal olmayan yari-optik bir denklem igin
baslangi¢ sinir deger problemi. Daha 6nce ¢aligilan duragan olmayan dogrusal
Schrédinger denklemini asan bu karmagik denklem, mikroskobik diizeyde
pargacik davraniginin daha dogru modellerini sunmaktadir. Arastirma, problemi
birinci tiirden bir problem olarak tanimliyor, ardindan ¢6ziimii i¢cin gerekli ve
yeterli kosullar1 titizlikle formiile ediyor. Cozliimiin varlig1 ve tekligi iizerine
teoremler kanitlaniyor ve ¢6ziimiin bir tahmini elde ediliyor. Bu ¢alisma
kuantum mekanigi ve optik i¢in, 6zellikle de dalga boylar1 optik sistemin
boyutlariyla karsilagtirilabilir oldugunda elektromanyetik dalga yayilimini
anlamak agisindan 6nemlidir. Bulgular, klasik fizigin 6tesinde yeni anlayislar
sunarak optik tasarim ve mithendislik uygulamalarmna katkida bulunmaktadir.

To Cite: Yagub G, Vural M., 2025. Solution of initial boundary value problems for the nonlinear stationary quasi-optical

equation with special gradient term. Kadirli Uygulamali Bilimler Fakiiltesi Dergisi, 5(1): 70-105.
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Introduction

Initial boundary value problems for linear and nonlinear stationary quasi-optical or non-
stationary Schrodinger equations often arise in quantum mechanics, nuclear physics, nonlinear
optics and various contemporary areas of physics and technology, and the study of these
problems is of both theoretical and practical importance (Butkovsky, 1973; Zhuravle, 2001).
One such problem is the problem of the motion of charged particles. As is well known, if
charged particles move in a constant homogeneous magnetic field and the direction of the
magnetic field is along the z-axis, then the motion of such particles takes place in the
(X, y) € E, plane, and this motion is usually described by the two-dimensional linear non-
stationary Schrédinger equation with a special gradient term (see (Butkovsky, 1973) page 182,
(Zhuravlev, 2001)).

Initial boundary value problems for linear and nonlinear quasi-stationary quasi-optical or
non-stationary Schrodinger equations without special gradient term were first considered in
(Iskenderov and Yagubov, 1988; Iskenderov and Yagubov, 2012) and initial boundary value
problems for linear and non-linear quasi-optical or non-stationary Schrodinger equations with
special gradient term were first considered in (Toyaoglu, 2012; Zengin, 2021). It should be
noted that the initial boundary value problems for the non-stationary linear Schrodinger
equation without special gradient term or for the stationary linear-quasi, quasi-optical equation
without special gradient term in the case where the coefficients of the equation are measurable
bounded functions depending only on the time variable, but not necessarily differentiable with
respect to the time variable, have been previously studied in (Iskenderov and Yagubov, 2012).
It should be noted that the non-stationary linear Schrédinger equation with special gradient term
and complex potential or the second kind of initial boundary value problem for the linear
stationary quasi-optical equation with a special gradient term was first considered in (Yagubov
et al., 2022). However, the initial boundary value problems for the nonlinear stationary quasi-
optical equation with a special gradient term have not been investigated when the refraction and
absorption coefficients of the nonlinear stationary quasi-optical equation are measurable
bounded functions depending only on its variable. Therefore, the topic of this study on the initial
boundary value problems for the nonlinear stationary quasi-optical equation with special

gradient term is topical and of theoretical and practical importance.

71



The Statement of the Initial Boundary Value Problem of First Kind

Let B be a Banach space and 0 < [,0 < L be given real numbers. C*([0, L], B) is the
Banach space of functions defined on the interval k times continuously differentiable and whose
values belong to the Banach space B, L, (0, 1) is the Lebesgue space of functions for which the
p-th power of their absolute value is Lebesgue integrable, L, (0, L,; B) is the Banach space of
square integrable functions defined on the interval (0, L), whose values belong to the Banach
space B, L, (0,L;B) is the Banach space of measurable bounded functions defined on the
interval (0,L) whose values belong to the Banach space B and I/l/p"‘ 0,D), %k'm(ﬂ)
(wWhere 1 < p,0<k,0<m), Q=Q;,=(0,0) x(0,t)) is the Sobolev spaces and have been
defined, for example, in (Ladyzhenskaya and Salonnikov, 1967; Lions, 1967).

Let 0 < x <!l and 0 < z < L. Consider the following initial boundary value problem

related to finding the function ¢ = Y (x, z).

Y o’y 9P : 2
=+ Qoo + 0, (5, 2) = — AW + VoY + (D + alpPY = f(r7) 21
Y(x,0) = ¢(x) (2.2)
Y(0,2) =yY(,z) =0 (2.3)
where (x,z) € Q,x € (0,01),t € (0,L),0 < ay € R,a, € Cwith
a, = Rea, + i.Ima,,Ima, > 0,Rea, < 0,Ima, > 2|Rea,| (2.4)

a(x),a;(x,z),vy(z),v1(z) are real-valued measurable functions and satisfy the following

conditions
da(x) d?a(x)
0<alx) <, x| SHe T | SHs (2.5)
da(x,z) 0%a,(x, z)
| (e, 2)| < g, || < s, | 5| < s (2.6)
|vs(2)| < by (2.7)

0 0
where Vx € (0,1), uq, 4z, u3 =const> 0,V (x,z) € Q,a,(0,z) = a,(l,z) =0,z € (0,T)

0
Us, Ug, Us, U = const > 0,s = 0,1,Vz € (0,L), by, b; =const> 0 ¢(x), f(x,z) are complex

valued measurable functions and satisfy the following conditions

0
p EW0,D),f € W) (2:8)
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The solution of the initial boundary value problem (2.1) — (2.3) is a function ¢ € WZO'1
0 0
(Q) satisfying equation (2,1) V(x,z) € Q, initial value condition (2,2) Vx € (0,1) and

0
boundary value condition (2,3) vz € (0, L).

The Solution of the Initial Boundary Value Problem of First Kind

In this section we will use Galerkin's method to prove the existence and uniqueness

theorem for the solution of the initial boundary value problem (2.1) - (2.3).

Theorem 3.1. Suppose that the complex number a, and the functions
a(x),a;(x,z), p(x), f (x, z) satisfy the conditions (2,4 — 2,8). Then the initial boundary value

0
problem (2.1)-(2.3) has only one almost everywhere solution that belongs to the space sz'l.

Moreover the following inequality holds.

+| f
|

6
ol
Wz(O, )

2

? 21 S 202 f ? 2,0 ° 1,0
L Y A U L Bt

where 0 < ¢, is a constant.

0
Proof. Consider any system of functions u;, = u,(x),k = 1,2, ... belongs to sz'l(O, D

which is orthonormal in L, (0, 1). Let us take the solutions of the eigenvalue problem

AX(x) = AX(x),x € (0,1),X(0) = X(I) = 0 (3.2)

corresponding to the eigenvalues A = 4;, k = 1,2 of the eigenvalue problem (3,2) as a

system of functions. The opertor A in (3.2) defined as below,

2

A=—tga

+ a(x) (3.3)

It must be said that the eigenvalue problem (3,2) is studied in (Ladyzhenskaya and

Salonnikov, 1967) and it has been shown that the problem (3,2) has solutions X = u;(x),k =

0 0
1,2,...for A = A, k = 1,2, .... Moreover, these solutions form a basis for W, (0, 1), W.2(0, D).

On the other hand, these solutions satisfy the conditions of orthonormality in L,(0,1) and

0 0
orthogonality in W.L(0, 1), W£(0,1). In other words, it provides the following relations,
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l
(e U1 00 = f e (Ot () x = 57 (3.4)
0

L duy du,, m
ik ] = s tndroy = | (a0 e 2+ aCgaum ) dx = 2487, (35)
0
{uk,um} = (Auk,Aum)Lz(l) = Aké‘};n (36)

where k,m = 1,2 ... §}* is the Kronecker constants defined as below

5 =

{1' fe=m (3.7)

0k+mkm=1,2

according to our assumption, since the condition 0 < a(x) is satisfied, the eigenvalues
A=A,k =1,2.. are real, positive and satisfy the conditions 4; < 4; ... whenever i < j and

i = .
kl_l;l;loﬂ.k 400

In addition, let us assume that ”uk”Wﬁ, b < dy < +oois finite forany k = 1,2, ... holds
2Y,

where d, is a positive constants.
According to the Galerkin's method, we will search for an approximate solution of the

initial boundary value problem (2.1)-(2.3) in the following form

N

P2 = @) (38)

k=1

the coefficients ¢ (t) = WN (., t), w1, o1y k = 1,2,...,N are found from the following

conditions:

dz u — (A 7 asz W Z
i (l[;N(- ’ Z): k)Lz(O,l) ( le( ’ )r uk)Lz(O,l) +1 <a1 ( , Z) #)
L,(0,D)

ax, uy
+(a|p" (-'Z)|2¢N(-,Z),uk)Lz(o,l) = fi(2)
where fi(z) = (f (-, 2), uk) 1, 0,0, Pk = (@, W) 1,00, k = 1,2, ..., N.

As can be seen, the system (3,9) is a system of a number of nonlinear first order ordinary
differential equations with variable coefficients and right-hand side of each equations is f;

which is in L, (0, L). As known from the theory of ordinary differential equations (3.9), (3.10)
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is a Cauchy problem and has at least one solution that belongs to W3 (0, L) (Alekseyev, 1979;
Vasilyev, 1980).

Lemma 3.2. For the solution of the system (3.9) - (3.10) the following inequality holds

2

f c & ldey (2)
IZ‘CKN(Z)‘ZdZJrIZ k ( Z<Hl// 021 )S (311)
0 k=L o0 k=1
<l WL, oy, Al nera
W2(0,l) W2 (Q) W2(0,1) W2 (Q)

Proof. Let us multiply the k" equation of (3,9) by c; " (z), add the obtained equations
from 1 to N over k and integrate from O to L over z < L. If we apply partial integration to the
obtained equation by using the conditions u; (0) = u, (1) = 0, we find the following equation

vz € [0,L].

opN
jﬂz( 0z lp ~ %o

+f Wo@ PN 12 + iva (YN |? + az [N |*)dxdT =f fGe, PN (x, ydxdr
Q, Qg

2 N

N
ov +ia;(x,7) aaixl/jN — a(x)lt/)NIZ) dxadt +

ox

if we subtract its complex conjugate from this equation, we obtain the following equation

N N N v
iJQZ <61/J PN+ W 1/’N> dxdrt + Ljnx (al(x, T)%lﬁ’v + a,(x, T)%WV) dxdt +

+2if v, () [PV |?dxdt + 2ilma2f |V |*dxdt = Zif Im(fyN)dhdr,Vz € [0; L]
Q Q

z z QZ

using the differentiability of the function a, (x, z), we can write the following equation from

the last equation vz € [0, L]

0 d
f — |[YN|2dxdr +f — (a1 (x, )Y |?)dxdt + Zlmazf [YN|*dxdt = (3.12)
a, 0Z a, 0% a,
daq(x,7) _
= f —— YN |?dxdr — 2] v (D) YV |?dxdT + 2] Im(fyYN)dxdr
Q 0x Q, Q,
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it is clear that the second term on the left hand side of this equation is equal to zero since the
function vy (x, z) satisfies the conditions " (0,2) = ¥V (,z) = 0,z € (0,L).

Therefore, using the conditions satisfied by the coefficients, we can easily obtain the

following inequality from equation (3.12):

YN G DNE, 0 + Zlmazf [N *dxdr < YN CONE, o + IIfIE,@ + (3.13)

X

VA
+(us + 2By + 1) f 1N (=112, g pdTVE € [0,T]
0

Using the formula (3.8) we can write the following relation:

N [e9)
WY GO 00 = ) 1k OF < D lonl? = 191,02 (3.14)
k=1 k=1
with the help of this relation, we obtain the following inequality from the inequality (3.13) :

N C DN, o + ZImazf [N |*dxd < o7, o0 + IfIIZ, @ + (3.15)

Wz

OJ)dr,Vz e[o,L].

#a 20+ [l (o)

since the second term on the left-hand side of this inequality is non-negative, we can write the

following inequality:

z
19N G DNE, 0 < N@lE 00 + IFIZ, @ + (s +2by + 1)f 1Y (=DIIE, o dT VE [0, L]
0

from this, with the help of Gronwall's lemma, we obtain that the following estimate holds:

16N CIE, 0 < c2(ll@lE, 00 + If1I,@)) V2 € [0, L] (3.16)

using this estimate, we also find the following estimate from inequality (3.15) Vz € [0, L]

YN G, DNE, 00 + ZImazj WM *dxdr < cs(I0l1Z, 0.0 + IfIIE, ) (3.17)

z
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Now let us try to evaluate the derivative of 2= To this end, let us multiply the k"

equation of (3.9) by A,c; " (2), add the obtained equations from 1 to N over k and integrate

them from zero to L over z < L.

We then obtain the following equality:

N N
ﬂi%z\ﬁ“—\/\y/“fnal(x,r)ag( A1/7dexdr+

z

+.[( W AT +iv, (¢ )WNAWN+a2‘1//N‘2¢//NAy7N)dXdr:

I X T Al// X r)dxdz, vz e[O, L]. (3.18)
Q,

from this equation we deduce its complex conjugate and find the following equation:

N N N ouwN
f <i(aa—Zm/3N W A¢N)+la1(x r)( g+ wxmp“’))dxdw (319)
Qg

+ [ (oW A — B + i, (AT + FAYY)) dxde +
0
+j (az|¢N|21/)NA1ﬁN —C_lzllelzlﬁNAle)dXdT —

= f (f (x, DAY (x, ) — f(x, DAYY (x, T))dxdr, Yz € [0, L]

ax

using the formula (3.3) for the operator A and the partial integration formula, we can write the

following equations with the help of the conditions v, (0) = u, () = 0,k = 1,2...

. oPpN -
f ia, (x,7) —— AYNdxdr = (3.20)
a, ox

N 52N auwN
= —f iaga, (x, T)i alpz dxdt +f ia(x)al(xsr)alzplvdxdr
a ox x

Ay
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| Gl Py i — a1 Ay axae = (3.21)
= 2ilma2f a(x)[yN|*dxadt +
Q

d )N 9 N
+a0Rea2f Ia(h/ﬂ” l/)N)i——(h/JNl 1,[)”) l/) dxdt

X

Considering equations (3.20) - (3.24), we obtain the following equation from equation
(3.29):

f Wo(YNAPN + vy (D)PYNAYY)dxdrt = (3.22)
Q

X

a2 yYN _
= f v (T)YN <—a0 6;[}2 + a(x)l/)N> +
27N

+iv, ()P (—ao 661/)2 + a(x)w_N> bhdt =

-[
‘)

f (@ YN PYNTIGY — @y [y 2N AN ) dcde = (323)

X

N12

+ vo(r)a(x)ltp’v|2> dxdrt +

2

6
<a0 vo(0) |5

N

0
<ia0v1(r) ai

+ ivy(t)a(x) |1/JN|2> dxdt

X

= 2ilm azj a(x)|[pN|*dxadt +
Q

* N
o 2 (5 2 dxar +

wN sz
+ayRe a, [a(h/)NPl/)N) ox (|l/)N| 1,[)N)— dxdt

N
+ia01ma2f l—(llllNl IIJN) i l
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| reon o = (3.24)

= f f(x,1) (—ao % + a(x)PN (x, T)) dxdt =

_f 6f(x D) 9" (x,7)
, % ox ox

+a(X)f(x, PN (x, r)> dxdr,Vz € [0, L].

X

Considering equations (3.20) - (3.24), we obtain the following equation from equation
(3.29):

2 Na_N aZ_Na N N LN
ij aO(azlgx (;/; +Ozl/6)x ;i)dxdr+ijﬂ a(x)( v YV l/) 1/1N>dxdr—(325)

N 327N ON 52N
_if agaq(x,7) (61,0 oy + WY >dxdr +
Q

Ox 0x? dx 0dx?

. oYN iV
; N N
+1fQ a(x)al(x,r)< ox Yy + ox P )dxdr+

Z

N12
+2if <a0v1(r) F +v1(r)a(x)|1/)’v|2> dxdr+2ilma2f a(x) |y |*dxdr +
Q, Qg
l.[)N oypr
+iagIma, I—(WJN l/JN) (|1/JN| YY) ldxdr+
N N
+agRed; [—(W 2y 2 ¢ T (g o | anar -

PN
=2i fﬂ aplm <6f((;;, 0 61,[) agcx’ T)> dxdt +

Z

+2i j a(x)Im (f(x, DY (x, T)) dxdt,vz € [0, L].
Q

z

It is evident that the following equations hold:

le
(|1/)N 2y —l dxdt = (3.26)

2
(¢N>2( l”N) ‘dxdf

iaplma, [—(W 2y 2
2

dxdt + iZaOImazf Re
Q¢

l/JN
0x

= i4aOIma2f [N |?
Qg
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N

N
V2 (g 2| dxde

d
apRea, [_ (|1/JN| IIJN)

with the help of these equations, we can easily obtain the following equation from equation
(3.25):

2

f 9 |ov” dd+J |N|2dd 3.28

o aoaz 9% xdt a(x) P xdt (3.28)
) ayYN| da, (x, ) [aYN |?

_ fﬂ aoa(al(x, 0| = )dxdr+ fﬂ ap—5—2=|=—| dxdr +

0
+ [ @@ s~ | S (aeom ey P s

N12

+2 fﬂ (aovl(r) a—

0x

+ vl(r)a(x)lle|2> dxdt + 2Ima, f a(x) [N |*dxdt
Q

z

N|? BV 2
+4aolmazj [N |? |—— dxdr+2aolmazj Re (1/)N)Z< ) ]dxdr+
Q, Q,
Ay
+2a0Reazf (l/)N)2< > ]dxdr =
Qg

B of (x,7) 9PN (x,7)
= ng aolm( 0% % )dxdr +

Z

+2J a(x)Im (f(x, DYV (x, T)) dxdt,Vz € [0, L].
Q

Z

The third and fifth terms on the left side of this equation are equal to zero due to the
conditions a,(0,z) = a;(l,z) = 0,z € (0, L). Taking this into consideration, we can write the

equation (3.28) in the following form:
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oyN|

ox

j 0
Q, o 0z

+4aylma, f [N |?
Qg

d
dxdt +f a(x)gllp’vlzdxdr + Zlmazf a(x) YN |*dxdr +
Q, Qg
2

da, (x,
dxdt = — f ao G0
Q, ox

2

6 N
v dxdt +

0x

YN
0x

N12

d
(%171 ) |5

FP” + vl(r)a(x)lle|2> dxdr —

2
W) ( IPN) ] dxdr +

)dxdr + 2f a()Im(f (x, )Y (x,7))dxdr,Vz € [0,L]
Q

Z

+ sz aa_x (a(x)a; (x, D) [PN|*dxdr — 2 f

Qg

N 2
—Zaolmazf Re [(l/)N)Z( i > ]dxdr— ZaOReazf
Q, Q

+2f ol <6f(x ,7) 0y (x, 1)
Q

z

Ox ox

from this equality we easily obtain the following inequality:

a()j
0

+4a,Ima, f [N |?

da,(x, 1)
o ﬂgz | ox

+2
Q

+2a,(Ima, + IReaZI)J [PV |2 |——

oYM (x, Z)
T ax

dx +J a() YV (x,2)|%dx + ZImaZJ a(x)|YN|*dxdr +
0 Q

l
dxdtr < ag j
0

dxdt + JQ (a(x)

Z

2

oy (x,0)|°

ox

da,(x,7)
ox

N l
l/) +f a(x)|yY" (x,0)|?dx +
0

da(x)
* | dx

61/)N
0x

a, (x, T)) lYN|%2dxdT +

N12

d
(aom(rn i

0x + a(x)|v1(r)||1pN|2> dxdt +

V4

oYM (x,7)
ox

le

2
dxdt + 2a, ﬂ
Ox

+2J a(x)|f (x, D)|[YN(x,7)|dxdr,Vz € [0,L]
Q

Z

W@ﬂ dxdr +

from this inequality, using the Cauchy-Bujakowski inequality with the help of the condition
(2.4) and the conditions satisfied by the coefficients of the equation, we get that the following

inequality holds:
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P 2 YN (.,0
WD) %n 2 oo + il GO, o +

oy dxdt <
Ll e — 9% xdt < ag

+a01ma2f [p" |2
2
2
dxdt + (papts + pafis + 201 by + #1)[ |1/ng| dxdt +

L, (0,1)
N

+a0(ﬂ5 + Zbl + 1)[

+a j
Q,

With the help of the formula (3.8) we easily obtain the following inequality:

of (x, D)’
0x

dxdt + ,ulj |f (x, D)|§,dxdr, vz € [0,L]. (3.29)

WYV
H < callelliv, o (3.30)

Ly(0.D)

with the help of this inequality, the relation (3.14) and the estimation (3.17), we can write the
following inequality from inequality (3.29):

2

oYN(.,z oy
H Vo)l +2H—Olmazj |¢N|4dxdr+lma2j Ak W dxdtr < (3.31)
L,on %o Q, 0x
“|lew o)’
<es (ol + W) 66 | |75 L doveeno
2\Y,

Since the second and third terms on the left-hand side of this inequality are nonnegative,

we obtain the following inequality:

“ oy . 9)||°

~x dt,vz € [0,L].

<cr (ol + I l) + co
0 Lp(0,1)

HOIPN 2)||°

L, (0, l)

Hence, with the help of Gronwall's Lemma, we derive that the following prediction holds:

Halp’v 2|

< cs (101300 + 113, @) V2 € [0,L]. (332)
Ly(0,1)

with the help of this estimation, we can also write the following estimation from inequality
(3.31):
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2 2

YN
dxdt < (3.33)

0x

+ 2 &Imaz f
Ao Q,

< cro(llellis0n + If i, @), vz € [0, L].

oY (., 2)
H 0x

[N |*dxdT + Imazf AE
L,(0,0) Qg

aZII)N
0x2

Now let us investigate the derivative of .For this purpose, let us multiply the k-th

equation of (3.9) by A%¢¥ (z) and sum the obtained equations over k from k =1 to k = N.
Then we get the following

equation:

(SN [ 2Dy dx el (2) — By i AN (x Dy (O dxAiel (2) +
HEN ) a0 2) 2020, ) dx el () + Shey [y vo(@W® (x Dy () dxAcl (2) +
HENL [ @Y™ (0 Due (0 dxG el (2) + TNy [ ap N (o 2) PN (x, 2w () dxAiel (2) =
= Y00 [y £ Du)dxaiel (2)

with the help of the relation Au;, = A, u;, we can write the following equation using the partial

integration formula:

l

N l N
D | 3 i = Y [ A i) +

k=1

+i

M=

l 0 N : N l
fo A <a1 (x,2) %) g (X)dx A,y (2) + ; j; v (2)AYN (x, 2)uy (X)dx A,y (2) +

1

+i

M==

&
1l

1

l N
[ wmp o axd () + Y [ Al o) 0 (D (it () =
0 y l k=1 0
DN RUCOMOIBRAD
k=1

Let us still use the relation Au;, = A,u;, and the formula (3.8) to integrate the resulting

equation over z from zero to z < L. Then we obtain the following equation:
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N

A (al (x,7) 6;[; ) AYNdxdr +

i jﬂ z%(Ale)AtﬁNdxdr— fﬂ ANYMAPN dxdt + i f

z QZ

+ j vo(T)|AYN |2dxdt + i f v (D) |[AYN |2dxdT + j Aay [PV 2PN)AYN dxdt =(3.34)
Q Q Q

z z z

_ f Af (x, D) ABY (x, 7)dxdz, ¥z € [0, L]
Q

zZ

Let us try to transform the second, third and sixth terms on the left-hand side of this

equation. In this case

0
AAP™) = =ao =— (AP™) + (M (3.35)

using the formula, we can write the following equation with the help of the partial integration

formula;

2
dXdT+J a(x)|AY" |?dxdt, vz € [0,L]. (3.36)
Qg

d
E (AYp™)

jﬂ Z ANYMIAPN dxdr = fﬂz ay

In order to transform the third term on the left-hand side of equation (3.34), first transform
N
A(al(x,z)%). With the help of the formula for the operator A we obtain

the following equation:

A[ai(X, Z)%j =2, aa—;(ai(x,Z)%}a(x)ai(x, z)% -

o%a,(x,z) ay™ da,(x,z) da(x)
IR YR ~2a(x) x 7 ~a(x2) ax
(3.37)
day, (X,2) 0
+2TAV/N+81(X,Z)&(AV/N).

Now let us transform the sixth term on the left side of equation (3.34). We can still write the

following equation with the help of the formula for the operator A :
62
Mazlp" P = —ag 5 (" ") + aza()lp" Pyt = (338)
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7

ou[ oy Y
v WN—ZaOaZ(FJ 7

Thus, with the assistance of equations (3.36) - (3.38), we obtain the following equation

- ZaZ‘y/N‘ZAy/N —aza(x)‘y/“‘ry/“ ~4aa,

from equation (3.34):

P 2
— (A dxdr —f a(x)|AYN|2dxdT — (3.39)
ox Q,

iLZ%(Ale)AI/;Ndxdr—f a,

Qy
j 0%ay (x,7) 9P
: q T a2 ox

Atﬁ”dxdr—ij (Za() ( D 4 a0 ())leA¢Ndxdr+
Q,

d , _
+i f 2 9a,(x,7) |[AYN | 2dxdT + i f a,(x,7) — (Az/)N)AllJNdxdr +
Q, ox Q, ox

+f vo(r)lAlelzdxdT+if v (D) | APV |2dxdT + ZaZf [ YN 2| AN |2 dxdT +
Q Q Q

zZ zZ z

+2a2f |l/)N|2|Al/JN|2dxdT—a2f a(x)llelzleAt/;NdxdT—4a0azf
Q Q

z z QZ

"’
YNAPNdxdrt —

ox

A 2
—2aq0a, fﬂz < (;/; > YNAYNdxdr —L Af (x, LYY (x, T)dxdt,Vz € [0, L]

Z

if we subtract its complex conjugate from this equation, we find the following equation:
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i f jﬂ (% (APMYAPN + % (Al/?N)Ale) dxdr + (3.40)
+4i fﬂ 9a,(x, 7) |AYN|2dxdt + i f a,(x, 1) <ai (AYMAYPN + % (AlﬁN)Av,lJN) dxdt —

0x
N LN
_if i al(xr)<61l) ADY + 0y Asz)dxdr—
Q,

x>\ 9 ax
i f (Za( x) ot al( D 4 gy ) 2 ))(szAle + PV AYNYdxdr +
Q,

+2ij vl(r)IAtpNIdedT+4iIma2f YN 2| AN |2dxdT —
Q Q

Z 4

—2ilma, f a(x) Y |?Re(N AYp™N)dxdt — 2iRea, f a() YN PIm PN AYN)dxdr —
Q, Qg
2

Re(yNAyY™M)dxdr — 8iayRea, f
Q,

2
Im(YNAYN)dxdr —

N

iaglma, fnz e

N\ 2 N\ 2
—4iaygIma, fﬂ Re (( ;/; > ¢NA¢N> dxdt — 4iayRea, fﬂ Im (( ;/; ) ¢NA¢N> dxdt =

= 2if Im(Af (x, )APN (x, 7))dxdt, vz € [0, L].
Q

Z

N

Now let us transform the third term on the left-hand side of this equation. It is clear that

the following equation holds:

i fQZ a,(x,7) (aa—x (AYMAYPN + :—x (AzﬁN)A¢N> dxdt =i fnz aa_x (a;(x, D|AYN|?)dxdr — (3.41)

daq(x,
—if 90,00\ N 2 e
Q Ox

Z

if we consider this equation on the left hand side of equation (3.40), we can write the following

equation:
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J 9z |Al/)N|2dxdT+lf — (a,(x, )| APV |2)dxdt +

d , K , oy
w3 [ ZCL Y. j 0y %(‘/’ Aww)dxdf_
o, Ox Q, 0x 9]

—Zif (2 a(x) 2D 1( D 4 a0 1) ()>Re(leA1/5N)dxdr+
Q,

+2i j v (D) |AY" |2dxdT + 4ilma, f YN 2| AN |2dxdT —

Qy Qg

—2ilma2f a(x) Y |?Re(pN APp™M)dxdr — ZiReazf a() YN PIm PN AYN)dxdr —
Q Q

z z
2

Im(YNAYN)dxdr —

N

Re(l,lJNAI/)N)dxdT — 8iayRea, f
Q,

—8iagIma, f
Q, 0x

_ PV
_4iaolma2 (( > ¢NA¢N> dxdt — 4iayRea, fﬂ Im (( F ) ¢NA¢N> dxdt

= 2if Im (Af(x, AYN (x, T)) dxdt,Vz € [0, L].
Q

Z

According to the conditions a,(0,z) = a;(l,z) = 0,z € (0, L), the second term on the
left side of this equation is equal to zero. Therefore, from the last equation we obtain the
following equality:

1

1
f |AYN (x, z)|?dx —f |AYN (x,0)|%dx +
0 0

da, (x, 9%, (x, dN
+3f M|mp'\’|2dxdr—2f g al(f 9 Re < v A¢N> dxdr —
o, ox , 9x o

Z

—zf (2 a(x) ————= 1( Dy +a,(x,7) ()>R(1/;NA1/)N)dxdr+
Q,

+2f vl(r)IAleIdedT+4Ima2f [N 2| AN |2dxdT —
Q Q

zZ z

—Zlmaz.fQ a(x) |V [?Re(V AY"N)dxdt — 2Rea, fﬂ a() PN PIm@PN APN)dxdr —
z ) z

Re(YNAyYN)dxdt — 8ayRea, j
a,

2
Im(YNAPN)dxdr —

N

aglma, -fnz e

N\ 2 NA 2
—4ayIma, fﬂ Re (( ;/; > ¢NA¢N> dxdt — 4ayRea, fﬂ Im (( ;/; ) ¢NA¢N) dxdr =

= Zf Im(Af (x, T)AYN (x,7))dxdt,Vz € [0, L].
Q

z

N
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Using the formula Ayp¥(x,0) = X¥_; ¢V (0)Au,(x) and the condition (3.10) we can

write the following equation

N

MY 0) = > A OM) = ) () = ) A (342)
k=1 k=1

k=1

on the other hand, it is also clear that the following equation holds:
N N 1 N 1
> ) = Y di [ o@ue©dneo =y [ o Mu©déu o
k=1 k=1 0 k=1 "0
with the help of the partial integration formula, we obtain the following equation:
N N 1
> () =Y. [ ApE© w0
k=1 k=1 "0
taking this equation into account in equation (3.43), we obtain the following equation:
N l N
W0 = Y [ AO@uEOERE = ). Beda)  (343)
k=1 "0 k=1
using this equality, we can write the following inequality:
N oo
AN (O, o) = z |(A@)|? < Z |(A@)ic|* = 1A@IF oy (3.44)
k=1 k=1

from this relation we can easily obtain the following inequality with the help of the operator A

AN (- '0)||l%2(0,l) < C11||<P||1%V2(0,l) (3.45)

with the help of this inequality, we can conclude from equality (3.42) that the following
inequality holds
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AN C 2DF 0 + 4Ima2J [N 2[AYN [Pdxdt < coqll@llf, o) + (3.46)
da
L| |[AYN | 2dxdT + ZaOJ

0 N
+3 [ v
Q, Qg

ox
+2 fﬂz (Za(x)|aala;c,r | la, (x, T )|_() )lellAledxdT+2Lt v, (O LN |2dxd +

a1 (x,7)
0x?2

|AYN |dxdT +

+(2Ima, + 2|Reay]) | a() YN |12 [PV || APV |dxdT +
Q,
2

l/)N
[N || AYN |dxdT +

+(12ayIma,

+2f IAf(x,T)IIAl,l)N(x, 7)|dxdt,Vz € [0, L].
QZ

Taking into account the conditions provided by the coefficients of the equation, we obtain
the following inequality from the last inequality with the help of the CauchyBunjakowski

inequality:

lAYY (., Z)”%Z(O,l) + 4Ima, f [YN 12| AN [PdxdT < Cllll(p”a/zZ(o,l) +

Z

+Gus + agtte + 2p1pis + Pty + 2by + 1)] |AYN|2dxdT +
Q,

ayYN|?
+agu Jf
(0]244) a, a

+(Ima, + IReazl),uff [YN|*dxdt + (Ima, + IReazl)f [N 2| AN |2dxdr
Q, Qg

dxdr + Qpuaps + Haka) f [V [2dxdr +
Q,

N2

+(12a,Ima, [N |AYN |dxdT +

+f |Lf(x,r)|2dxdr,‘v’z € [0,L].
Q

Z

Hence, with the help of the condition (2.4) and the e-Cauchy inequality, we can derive

the following inequality:
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5
||A¢N(.,z)||z2(0'l) + Elmazj [WN 2| AV |2dxdT < c11||go||§|,22(0,l) +
Q,

+QBus + aotts + 2papis + paps + 2by + 1) f |AYN |2 dxdr +
Qg

o 2

+21ma2,ulj [N |*dxdt + 9a01mazej YN 2| AN |2dxdT +
Q, Q

4 9aylma, j
€ Q,

By choosing from this inequality € = % we find the following inequality:
0

" et + Qutgts + gt f ¥ 2 dxdr +
Q,

4

dxdt +j |Af (x,7)|%dxdz,Vz € [0, L].
Qg

oyN
ox

1AYN C, 2)IZ, o) + Ima j " 2IAYN [2dxdr < cll@lZ e + (347)

+QBus + aopts + 21 pis + papts + 2by + 1) f |AYN|?dxdt +
Qg

2

N 3
+a0.“6f ox dxdt + (2pyps + M2M4)f [N [*dxdT + Elmazli%f [N |*dxdr +
Q, Qg Qz
N4
+54a§lma2f ——| dxdr + f |Af (x,7)|%*dxdz,Vz € [0, L].
a, | 0x Q,

According to the inequality we know from the studies of (Ladyzhenskaya,1967 and
Ladyzhenskaya,1973 ) we can write the following inequality:

J, [

z 192" (.0

axz

N (DI
‘ 0x

dt,vz € [0,L]. (3.48)

z L,(0,0) L,(0,1)

Here § > 0 is a known constant. If we apply the Cauchy-Bunjakowski inequality to the

right hand side of this inequality, we get the following inequality:

[, For eeee<z]

Taking this inequality into consideration, we get the following inequality from the

4 2

azle
ax2

A ‘WN e o)l

ox d+

Ly(0,D)

dt,Vz € [0,L](3.49)
L,(0,)

inequality (3.47):
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AN C, DNIZ, 00 + lmazf [N 1P [ApN 12 dxdT < crpll @l o + (3.50)

zZ

+QGus + aotte + 2py s + pais + 2by + 1) f |AYN |[2dxdT +
Q,

-

3
dxdt + Quqips + u2u4)f [N |2dxdt + —Imazuff |V |*dxdt +
Q,

2 QZ
oYN(.,t 2YN(., 1 2
+27a0 % ( ) dt + 27a Imazﬁf 1/)6—2) dt +
Ox L(0,0) x L,(0,1)
+f |Af (x,7)|%dxdz,Vz € [0, L].
Q
It follows that the estimates of (3.17), (3.33) and
IAfIIZ, @) < crzllf i, @ (3.51)
with the help of the inequality, we obtain the following inequality:
AN ¢ DN, o) + Imazf [N 2| AN |2dxdT < (3.52)

Z

2 2 6 6 I*YN(, D)
e | ellivg,on + 11wy + lellw, o + 1 lwy@) | + c1a 92 Iz, copndT +
W,,0 0

z
+C15f ”Ale("T)”%.Z(O,Z)dTJ Vz € [O,L]
0

Using the formula for the operator A, we can write the following inequality:

62 N .,
NAYY (., 2) 1,00 = ao%"‘ a( YN (.,2)

o*PN (., 2)

0x?2

>
L (00)

— e D, 00

L,(0,1)

Z Y0

from this we deduce the following inequality

%YM (., 2)

1
“oxZ <=MV D), 00 + — ||1/JN( 2,00 (3.53)

L,(0,) 0

considering this inequality and the estimation of (3.17), we obtain the following inequality from
inequality (3.52):

91



A" (2],

Ly(0,

-+ |ma2i\¢/N\2\AwN\2dxdfs (3.54)

Scm[nconiz e el +IAE ]
W2(0,1) W2 (Q) W2(0,1) W2 (Q)

sy [JAw" (o)
0

dr,vze [O, L] .
L(0)

Considering that the term on the left-hand side of this inequality is non-negative, we can write

the following inequality:

2
A N 4 < 22 220 61 610
v )HLZ(OJ) Clﬁ[||¢”v%2<o,l>+”f l;: (g)+||‘/’||V32(0,.)+||f||v‘o; <@>]+

e, [ay (o))
0

dr,Vze [O, L] .
L(0)

From this, with the assistance of Gronwall's lemma, we obtain that the following

prediction holds:

6 6
ol 0l

j, vze[0,L].  (3.55)

2
HAWN (" Z)HLZ(O,I) : s (Hq)”\?\}z(o,l) +||f||\§\)/§0(9) +”¢ (o) ' ”f

0
W2 W2 (Q)

Given this estimate, we also find that the following estimate from inequality (3.54) holds:
2

Ay (.2 < ’. i " " 3.56

G R [ R 1 S At g 356)

oy [[lAv™ (. r)H;O’I)dr,Vz elo,L].
0

From the inequality (3.53) with the help of the estimates (3.17) and (3.55) we obtain the

following estimate:

Jaw (o).

Ly(0/

)+ |m8.2Hl//N‘2‘Al//N‘2 dxdzr < (3.57)
Q,

2 6

<aoflo e, o)
W2 (Q)

2
02
W2(0,1)
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By adding the estimates (3.16), (3.32) and (3.57) side by side, we can write the following

estimate:
b Dl < eallofs +UEe wlolly 4l Jvzelol] @5
wzh) 2 TS o Wo () W2 (o) W2 (Q)
Now let us evaluate the derivative of 22—, For this purpose, let us multiply the k-th
de (Z)

equation of (3.9) by ———— and sum the obtained equations over k fromk = 1to k = N. If we

integrate both sides of the obtained equation over the interval (0, L), we obtain the following

equation:

[

N N N N
+f <v0(z)leai+wl(z)szai+a2|¢N| v ¥ )d dz _f fidxdz
Q

2 azwlv l/)N le awN

N Pt
G5z g, Tl 5

0z

a(x)yYN lp) dxdz +

from this we can derive the following equation:

k

-]- N . N alﬁN
=—i| (—vo@YN —ivy(D)YPN — a, [PV 2PN + f(x,2)) — dxdz
Q 0z

oYM |?
0z

azle 0 N le
— i P SN v N\ZY _
dxdz = lL( Qo752 iai(x,z) 9% + a(x)y ) 57 dxdz

from this equation, with the help of the Cauchy-Bunjakowski inequality, we obtain the

following inequality:

k

+7(u? + b + blz)f [N |2dxdz + 7|a2|2f lYN|edxdz + 7f |f|?dxdz
Q Q Q

2

dxdz < 7a3 J
Q

2

dxdz + 7u3 f
Q

2
dxdz + (3.59)

aleN N
0x?

YN

0z

ox

now let us consider the fourth term on the right hand side of this inequality. According to the
inequality we know from (Lions,1972; Yagubov,lbrahimov and Suleymanov,2022) we can

write the following inequality:
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N |-

oy (.2)
OX

~ 1
v (. Z)HL%(OJ) <p v (. Z)Hiz(o,l) vze[o,L]. (3.60)

L,(01)

Here 8 > 0 is a known constant. From this inequality, with the help of (3.16) and (3.32)
we obtain the following estimate:

6
HWN (" Z)HLw(O,I) < Gy (”(D”\;/z(o,l) +”f||\;)/12v°(g)j’vz € [O'L] (3'61)

With the help of this estimate and the estimate of (3.58), we find the following estimate
from the inequality (3.59):

2

op™
oz

SCzs(II(pII;E(OI e el ],VZE[O,L]. (3.62)

L(Q) ) W2 (Q) W2(0,1) W2 (Q)

If we integrate both sides of the estimate (3.58) over the interval (0, L) and add the resulting

estimate with the estimate (3.62), we obtain the following estimate:

2
<Cy |lol:  +[ [0 o +|f[fe |vze[O,L], N=12,... (3.63
B [ P A A [T oy AR (63

v

Here the constant c,, > 0 is independent of N. Using this estimate and choosing ¢, =
C24, We prove that the lemma holds. Lemma 3.2 is proved. Now let us continue the proof of the
theorem. By (3.11) or (3.63) we can choose a subsequence {1 (x,z)} from the sequence
{¥m(x,z)} which converges to the function (x,z) in the space Wy*!
W, (Q). Let us show that this limit function (2.1) - (2.3) is the solution of the initial boundary
value problem in the sense of Definition 2.1. To this end, let us first show that the function
Y(x, z) almost satisfies equation (2.1) for (x, z) € Q.Therefore, when N = N,,,(3.9), the k-th
Fourier coefficient of any function 77(x, z) belonging to the space L,(Q) is the k-th Fourier
coefficient. Multiply by the function 77, (z) = (17(., z), ux) 1, (0,1)- LT Us multiply the obtained

equations over k from k = 1 to N’ < N,,, and integrate over the interval (0, L). Then for any

function ﬁ,’é"(x, z) = ’,X;l M (2)ur(x)N' < N,,, we obtain the following integral equivalence:
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Nom 2,,Nom Nom
j <i 0¥ oY o _ a(x)yphm + (3.64)
Q

07 + ag 22 +ia,(x,2) 0%

+0o ()P + vy (2)PNm + ap|YNm2PNm — £ (x, 2)7" (%, 2)dxdz = 0

0
from the compact embedding of the space W,>'(Q) into the space L,() we can write the

following limit relation:
For m — o0,pNm — 1)) is strongly convergent in L, () (3.65)

if this is the case, we can choose a subsequence {"m(x,z)} which converges almost
immediately to ¥ (x, z) in the Q region. For simplicity, let us denote the convergent subsequence

again by {y¥m(x, z)}. Then we can express the following limit relation:

For m — oo, [YNm (x, 2)|2YNm(x, 2) = [Y(x, 2) |2 (x, z) (3.66), weakly in L,(Q)" for

0 21

almost every (x, z) € . On the other hand, by embedding the space W (Q) into the space

Lo (0, L: W(0,1)) (see [25]), we obtain the following inequality:

021
W 2 (Q)

Hl//Nm Lm[O,L;v(\)/Z(O,I)] < Cys Hl//Nm

then with the help of the estimation (3.11) we can write the following inequality when
N=N, m=1.2,...

<c,.,m=12,... (3.67)

LO[O,L;V(\)IZ(O,I)] - 26

o
it is obvious that for m = 1,2, ... the following inequality applies:

25

2 L 2
| a0 A

L(oll

L
)dz SJHV/Nm(.,z)Hl(OJ)dz,m ~1,2,... (3.68)
0

on the other hand, from the inequality (3.60) we obtain the following inequality when.
N=N,m=12,..:
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6
ol dZ <
W2(0,1)

L L L
Tl 02 1 2 02 <™ (2

_C27HW [OLwlz(Ol)] m=12,..

Then, with the help of this inequality and the inequality (3.67), we find from the inequality
(3.68) that the following inequality holds:

I 2pnllZ o) < crpm = 12, .. (3.69)

therefore, based on this inequality and the lemma known from (Ladyzhenskaya,1967) we can

conclude that the following limit relation holds:
For m — oo, [pNm|2qhNm — |1)|?4p, converges weakly in L, (). (3.70)

Taking into account this limit relation and the weak convergence of the subsequence

0 21

YNm(x, z) to the function ¥ (x, z) in the space W (Q) by passing to the limit in the integral
identity (3.64) over Nm,m = 1,2, ..., we obtain that the following integral identity holds for

any function

—; N’

Ak (x, 7) = Z k = 1V' 7k (2)uk (x): f (1/)(x, 2) a”k

— kN (%, 2) %’) dxdz =0
2

L <l(;_l/1 + a, o 1/2)+ iaq(x, Z)—l/)— a(x)y +
+00(2)Y + 1 (DY + az Y2 — f(x, 2)AV (x,2)dxdz = 0

NI

N (x z) = z Mk (Z)ur(x) is a partial sum of the series 77(x,z) = Z M (Z)ug (x)

since N’ For — oo the partial sum ﬁﬁ"(x, z) converges to the function 77(x, z) in the space
L,(Q). If This then in the last identity N’ If we take the limit for - oo, we can conclude that the
limit function ¥ (x, z) satisfies the following integral identity for any function n = n(x, z)
belonging to the space L,(Q) :
0y %Y

L <la— +ag— EP%) + iaq(x, Z)—w —a(x)y + (3.71)

+vo(2)Y + i1 (2P + ax|Y*Y — f(x, 2))7 (x, z)dxdz = 0
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From this, we obtain that the function ¥ (x, z) satisfies the equation (2.1) for almost every
(x,2z) € Q.

Now let us show that the limit function ¥ (x, z) satisfies the initial value condition (2.2)

for almost every x € (0,1), that is, the condition 1 (x,0) = @(x),Vx € (0,1). Taking into

0 21

account that the space W () is compactly embedded into the space C"([O,L],L2 (O,l)) , We

can write the following limit relation, uniformly with respect to z € [0, L]:
Form — oo, [[*n (., 2) = (., 21,00 = 0 (3.72)
on the other hand, it is evident that the following inequality holds:
1¥(,0) = @llL 00 < I(,0) =M (0L, + W™ (,0) = @l (3.73)

when z = 0, using the limit relation (3.72), the first term on the right-hand side of this inequality
approaches zero for m — oo. Therefore, let us show that the second term on the right-hand side
of inequality (3.73) also approaches zero for m — oo. Using the formula (3.8) we can write the

following formula:

Nom Nom
P, 0) = Y el (Oue() = ) pitte(x) = 9" ()
k=1 k=1

the Vm (x) function is the partial sum of the Fourier series of the function ¢ = ¢ (x) belonging

02
to the space W, (0,1). Taking this into account, if we take limit for m — o in the second term

on the right-hand side of the inequality (3.73), we obtain the following limit relation
Form — oo, [[1h"m(.,0) = ¢llL, 0 = O (3.74)

thus, if we take this limit relation and the limit relation (3.72) when z = 0 and limit for

m — oo on both sides of the inequality (3.73), we find the following relation:

1¥(,0) = @ll,00 =0
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from this, we obtain that the limit function ¥ (x, z) satisfies the initial value condition (2.2) for
almost every x € (0, 1), that is, the condition ¥(x, 0) = ¢@(x),Vx € (0, 1). Finally, let us show

that the limit function (x,z) satisfies the boundary value conditions

(2.3) for almost every z € (0,L). From the compact embedding of the space W, (Q) into the
space C°([0,1],L,(0,L)), we can write the following limit relation, uniformly with respect to

x €[0,1]:
Form — oo, [[p"m(x,.) = (x, )ll,01) = 0, ¥x € [0, 1] (3.75)
On the other hand, it is apparent that the following inequality holds:

(s, I, < llY(s,.) — I/JN’"(S'))” L,(0,L) +||¢Nm(5')||L2(0,L)'S =0,1 (3.76)

if we use the limit relation (3.75) when x = 0, x = [, we can see that the first term on the
right hand side of this inequality approaches zero for m — co. Therefore, let us show that the
second term on the right-hand side of the inequality (3.76) also approaches zero for m — oo.

Using the formula (3.8), we can indeed write the following inequalities:

Nm
Phm(s, 7) = z MM (2 (s),5 = 0,1 (3.77)

k=1

if we consider the boundary value conditions u; (0) = u,(l) = 0, we obtain the following

relations:
YNm(0,2) = Ym(l,2) = 0 (3.78)

thus, if we use these relations and the limit relation (3.75) when x = 0,x = [ and limit for

m — oo on both sides of the inequality (3.76), we get the following relations:
¥, I, =0,s=0,1 (3.79)

from these relations, we obtain that the following boundary value conditions are valid:
0]
Y(0,z) =y(l,z) =0,vz € (0,L).
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Thus, we have proved that the limit function ¥ (x, z) is a solution of the initial boundary
value problem (2.1) — (2.3) in the sense of Definition 2.1 belonging to the space W, (), and
for this solution, the estimate (3.1) holds. Indeed, taking into account the convergence property
of the subsequence yY"m(x,z) to the function ¥ (x,z) in the estimate (3.11), and setting
N = N,,,m = 1,2, ..., we find that the estimate (3.1) holds by taking the limitas m — oo.
Now, let us show that the solution of the initial boundary value problem (2.1) - (2.3) is unique.
Suppose that 1 (x, z) and ¢(x, z) are any two solutions of the initial boundary value problem
(2.1) - (2.3). Let w(x, 2) = Y(x,2) — ¢(x, z). Then, it is clear that the function w = w(x,z)

is a solution of the following initial boundary value problem:

ow 2 , ow _
LE + ag 7% +iaq(x,2) EV a()w +vy(2)w + vy (2)w + (3.80)
+az([Y1° + 91w + azppw = 0, (x,2) € Q
w(x,0)=0,x € (0,1 (3.81)
w(0,z) =w(l,z) =0,z€ (0,L) (3.82)

Since the functions ¥ (x,z) and ¢(x,z) are solutions of the initial boundary value
problem (2.1) — (2.3) belonging to the space W°21(Q), the function w = w(x, z) must satisfy
the identity

j LI ow + +i + 3.83
o L ao o2 ia(x,7) % a(x)w + vy(t)w + v, (T)w (3.83)

+a,(|Y)? + |p|PDw + a,pdpw)(x, T)dxdTt = 0,Vz € [0, L].

It is evident that w(x, z) satisfies the integral identity and the initial condition (3.81) for

almost every x € (0, 1), and the boundary condition (3.82) for almost every z € (0, L). In this

0 21

integral identity, let us take the function w(x, z) belonging to the space W2 (Q) instead of
n(x, z). Then, with the help of the partial integration formula, we obtain the following equality:
. OW o*'w . ow :
I(lE+aoW+|a1(x,r)&—a(x)w+vo(r)w+|v1(r)w+
(3.84)
+a, (|://|2 +|¢|2)w+ azz//¢v‘v)77(x,r)dxdr =0,vze[0,L]

if we subtract its complex conjugate from this equation, we can write the following equation:
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J(aw_+aw ) dxd +f( L ow )dd+2J 2qxdr +
o 2Vt W xdt o al(x,r)axw al(x,r)axw xdt Qvl(r)|w| xdt

V4

+21mazf (I¥)? + |93 |w|?dxdT + ZImazf Re(yp(W)?)dxdrt +
Q, Q

Z

+2Rea2f Im(yp¢p(W)?)dxdt = 0,Vz € [0, L]. (3.84)
Qz

If we transform the second term on the left hand side of this equation, we get the following

equation:

f ( aw_+ aw )dd
N al(x,r)axw al(x,r)axw xdt

z

d daq(x,
= fﬂza(aﬁx.r)lle)dxdr—fﬂz#lwpdxdr

under the boundary value conditions of (3.82), the first term on the right hand side of this

equation is equal to zero. We can therefore write the following equation:

j’ ( 6w_+ ow )dd _ f daq(x,7) 2dd
. al(x,r)axw al(x,r)axw xdt = |w|“dxdt

; Q, 0x

considering this equation, we obtain the following equation from equation (3.84):

ow _ Jdw
f (—w+—w) dxdr+21ma2f ()% + |92 |w|?dxdt =
o, \0z 0z Q,

= —2[ v, (D) |w|?dxdt — ZImazf Re(Yp(W)?)dxdt — 2Rea2f Im (e (W) )dxdr, vz € [0, L].
Q Q

z zZ ‘Q'Z

From this equation, and with the help of the initial value condition (3.81), we find that

the following inequality holds:

WG 200 + 2imas | (Wl + 1617 wiPdxds <
Q,

2
Q

Hence, from the condition for 2|y||¢| < |¥|? + |¢|? and the function v, (z) we obtain

lv,(D)||w|?dxdt + 2(Ima, + IReazl)j [Y|l¢||w|?dxdz,Vz € [0, L].
Qz

Z

the following inequality:
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IwC, DL, on + ZImazJ (IpI* + |9 |w|*dxdT <
Q,

w|?dxdt, vz € [0, L].

<2b1f
Q

From this inequality, with the condition (2.4), we find the following inequality:

w|?dxdt + (Ima, + |Rea2|)f (Jy|?
Q,

z

1
WG D00 +51mas | (I + @) wldxdr < 2by f |w|2dxdz, vt € [0,T].
Q

Z

Provided that the second term on the left-hand side of this equation is non-negative, we

can write the following inequality:

IwC, 211,00 < 2b1 i IWC, DI, 0pnd7 V2 € [0,L].
Applying Gronwall's lemma, we obtain the following relation:
”W('JZ)”ZZ,Z(O,I) = 01 Vz € [Or L]

From this we get the following relation:

0
w(x,z) =0,vx € (0,0),vz € [0,L].

From this relation and the formula w(x,z) = ¥(x,z) — ¢(x,z) it follows that the

solution of the initial boundary value problem (2.1) - (2.3) is unique. Theorem 3.1 is proved.
Setting and Solution of the Second Kind of Initial Boundary Value Problem

Consider the following second kind of initial boundary value problem for finding the
functiony = ¢Y(x,z) :

52
lc;_lli + a, I l'zb +ia,(x, Z)—lp —a(X)Y + vy ()Y + iv (DY + ax|Y|? = f(x,2), (x,2) € O

Y(x,0) = @(x),x € (0,0 (4.2)
oy (0, ow(l,z
w;x 2 ‘/’a(x 2 _0,z€0,L) (4.3)
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Here where i = v—1; ay > 0 is a given number, a, is a complex number and satisfies

the following conditions:
a, = Rea, + ilma,, Ima, > 0,Rea, < 0,Ima, > 2|Rea,| (4.4)

a(x),a.(x,z),vy(z),v1(z) are real-valued measurable functions and satisfy the following

conditions:
da(x) d?a(x) .
Ho < a(x) < Uy W S Mo W < U3, VVX E (0' D, uo, 1, 2, p3 = const > 0(45)
da,(x,z) 0%a,(x,2) 0
las (o, 2)| < e, |5 < ts, [—5 5| < be, V(x,2) EQ (45)
4.6) (4.6)
a1(0,z) =a,(l,z) =0,z € (0,L)us, Ua, Us, 4g = const > 0 (4.7)

0
4.7) |vg(2)| < bs,s = 0,1,Vz € (0,L), by, by = const >0
@ (x), f (x, z) - are complex-valued measurable functions satisfying the following conditions:

dp(0) de()

@ € WZZ (O) l)' dx - dx =0 (48)
rewo @, g;’ 2 _o (,gi D _0,7€ (0,1 (4.9)

Definition 4.1. The solution of the initial boundary value problem (4.1) - (4.3) is defined
as the equation (4.1) for almost (x,z) € Q, the initial value condition (4.2) for
almost x € (0,1), and the boundary value condition (4.3) for almost z € (0,L), we will

understand the function y = ¥ (x, z).

In this section we prove the following theorem which shows the existence and uniqueness

of the solution of the second kind of initial boundary value problem (4.1) - (4.3).

Theorem 4.2. Suppose that the functions a(x), a;(x,t), @(x), f(x,t) of the complex
number a, satisfy the conditions (4.4) - (4.9). Then the initial boundary value problem (4.1) -

(4.3) has only one immediate solution in the space W,"(Q) and the following estimate holds:

2
Lo (2 WO L4 RO RS L oy (4.10)
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Where c,9 > 0 is a constant.
The proof of this theorem is equivalent to the proof of Theorem 3.1. For the proof of this
theorem, the basis functions are the functions from the space of functions W#(0,1) and

orthonormal in the space L, (0, ) and

dx(0) dX(l)

AX(x) = AX (), x € (0,1),~— =

0 (4.11)

The system of functions u;, = u, = u,(x), k = 1,2, ..., corresponding to the solutions of
the eigenvalue problem A = A,,k = 1,2, ... is used. Here the operator A is defined by the
formula (3.3).
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