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 Soft set theory was proposed by Molodtsov in 1999 to model some 

problems involving uncertainty and it has a wide range of theoretical 

and practical applications. Soft set operations constitute the vital 

building block of soft set theory. Since its introduction, several kinds 

of soft set operations have been proposed. In this study, in order to 

advance the soft theory, a new soft set operation known as the 

complementary extended lambda operation is described in this study, 

and all of its characteristics are thoroughly examined, and to obtain the 

relationship of the operation with other soft set operations, the 

distribution of this operation over other type soft set operations are 

examined. 
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 Esnek küme teorisi, 1999 yılında Molodtsov tarafından belirsizlik içeren 

bazı problemleri modellemek amacıyla ortaya atılmış olup, geniş bir 

teorik ve pratik uygulama alanına sahiptir. Esnek küme işlemleri esnek 

küme teorisinin önemli yapı taşını oluşturur. Başlangıçtan bu yana çeşitli 

türlerde esnek küme işlemleri tanımlanmıştır. Teoriye katkı sağlamak 

amacıyla bu çalışmada tümleyenli genişletilmiş lamda işlemi olarak 

adlandırılan yeni bir esnek küme işlemi tanımlanmış, tüm özellikleri 

ayrıntılı olarak ele alınmış ve işlemin diğer esnek küme işlemleriyle 

ilişkisinin elde edilmesi için, bu işlemlerin diğer tip esnek ayarlama 

işlemlerine göre dağılımı incelenmiştir. 
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1. Introduction 

Probability theory, interval mathematics, statistics, intuitive fuzzy set theory, and fuzzy 

set theory are some of the most well-known and commonly used mathematical theories for 
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modeling uncertainty. One of the most prominent theories among these theories is the fuzzy set 

theory. Since this theory contains some structural difficulties, there has been a need for different 

theories. A fuzzy set is defined through its membership function. Since it is difficult to create a 

membership function for each case, the nature of the membership function is highly 

individualized. Therefore, there has been a need for a set theory independent of the formation 

of the membership function. The Soft Set Theory proposed by Molodstov (1999) has eliminated 

the problems arising from the membership function. Molodstov has transferred soft set theory 

to many areas of mathematics. Operations research, game theory, probability, measurement 

theory, continuously differentiable functions, Riemann's integration, and Perron's integration 

are the areas where soft set theory has been successfully used. 

Soft set operations constitute the basis of soft set theory, as studies on both soft algebraic 

structures and soft decision-making methods are based on soft set operations. In this regard, 

Maji et al. (2003) started the inspiring studies on soft set operations.  A more widely accepted 

definition of soft subset than the one defined by Maji et al. (2003) was proposed by Pei and 

Miao (2005). When the studies of soft set operations such as Maji et al. (2003), Ali et al. (2009), 

Ali et al. (2011), Sezgin and Atagün (2011), Sezgin et al. (2019), Stojanovic (2021) are 

examined, it is seen that soft set operations proceed under two separate headings as restricted 

and extended operations. Eren and Çalışıcı (2019) proposed a new form of soft set operation 

for the literature and Sezgin and Çalışıcı (2024) improved the work of Eren and Çalışıcı (2019) 

and studied the properties of the soft binary piecewise difference operation comparing it with 

the difference operation in classical sets. Çağman (2021) and Sezgin et al. (2023c) studied new 

binary set operations, and these operations were transferred to soft sets by Aybek (2024). 

Besides, some new forms of soft set operations, different from the restricted and extended forms 

of operations were introduced by various authors (Sarıalioğlu, 2024; Akbulut, 2024; Sezgin and 

Aybek, 2023; Sezgin and Akbulut, 2023; Sezgin and Dagtoros, 2023; Sezgin and Demirci, 

2023; Sezgin and Sarıalioğlu, 2024; Sezgin and Yavuz, 2023a; Sezgin et al., 2023a; Sezgin et 

al., 2023b; Sezgin and Atagün, 2023; Sezgin and Çağman, 2024), and soft set operations, one 

of the most fundamental elements of soft set theory, have been studied by researchers since the 

theory was introduced.  

Moreover, different types of soft eqaulities were defined and some important equivalance 

relations were obtained with these different types of soft equalites as Jun and Yang, 2011; Liu 

et al., 2012; Feng and Li, 2013; Abbas et al., 2014; Abbas et al., 2017; Al-shami, 2019; Alshasi 

and El-Shafe, 2020; Ali et al., 2022. Studying the soft algebraic structures of an algebraic 

structure and other types of soft sets has been of interest by the researchers as Sezer, 2014; 
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Muştuoğlu et al., 2015; Ali et al., 2015; Sezer et al., 2015; Mahmood et al., 2015; Sezgin et al., 

2017; Atagün and Sezgin, 2018; Sezgin, 2018; Mahmood et al., 2018; İftikhar and Mahmood, 

2018; Jana et al., 2019; Mahmood, 2020; Özlü and Sezgin, 2020; Sezgin et al., 2022. Soft set 

theory and fuzzy set theory in different aspects have both theoretical and application aspects 

and they have been applied to decision making problems and real-life problems succesfully as 

Özer, 2022; Özlü, 2023a, 2023b, 2024, Özlü et al., 2024. 

In the scope of algebra, one of the most important mathematical issues is to analyze the 

properties of the operation defined on a set to classify algebraic structures.  In this study, we 

define a novel type of soft set operation called complementary extended lambda operation and 

we discuss its properties to contribute to the theory of soft set literature theoretically. In order 

to determine the relationship between the complementary exteneded lambda operation and 

other soft set operations, the distribution of complementary extended lambda operations over 

other kinds of soft set operations such as; restricted soft set operations, extended soft set 

operations and soft binary piecewise operations are examined and many interesting results have 

been obtained. 

 

2. Preliminaries 

Definition 2.1. Let E be the parameter set, U be the universal set, P(U) be the power set 

of U, and M ⊆ E. A pair (F, M) is called a soft set on U. Here, F is a function given by F: M →

P(U) (Molodtsov, 1999). 

SE(U) denotes the set of all soft sets over U throughout this paper. Let M be a fixed subset 

of E, then the set of all soft sets over U with M is indicated by SM(U). In other words, in the 

collection SM(U), only soft sets with the parameter set M are included, while in the collection 

SE(U), soft sets over U with any parameter set can be included.  

Definition 2.2. Let (F, M) be a soft set over U. If F(v)=∅ for all v∈M, then the soft set 

(F, M) is called a null soft set with respect to M, indicated by ∅M. If for all v∈M, F(v)=U, then 

the soft set (F, M) is called a whole soft set with respect to M, indicated by UM. The relative 

whole soft set  UE with respect to E is called the absolute soft set over U (Ali et al. 2009). A soft 

set with an empty parameter set is indicated by ∅∅, called by empty soft set, and  ∅∅ is the only 

soft set with an empty parameter set (Ali et al., 2011) 

Definition 2.3. For two soft sets (F, M)  and (G, Y), we say that (F, M)  is a soft subset of 

(G, Y) and it is indicated by  (F, M) ⊆̃ (G, Y),  if  M ⊆ Y and F(v) ⊆ G(v), for all v∈M. Two 
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soft sets (F, M)  and (G, Y) are said to be softequal if (F, M) is a soft subset of (G, Y) and (G, Y) 

is a soft subset of (F, M) (Pei and Miao, 2005). 

Definition 2.4. The relative complement of a soft set (F, M), indicated by (F, M)r, is 

defined by (F, M)r = (Fr, M), where Fr: M → P(U) is a mapping given by (F, M)r = U\F(v) 

for all v ∈ M (Ali et al. 2009). From now on,  U\F(v)=[F(v)]′ will be designated by F’(v) for 

the sake of designation. 

Çağman (2021) defined two new complements as inclusive and exclusive complements. 

+ and θ denote inclusive and exclusive complements, respectively, and M and N are two sets, 

these binary operations, M+N=M'∪N, MθN=M'∩N'. Sezgin et al. (2023c) analyzed the 

relations between these two operations and also defined three new binary operations and 

examined their relations with each other. Let M and N be two sets, then M*N=M’∪N’, M𝛾N= 

M’∩N, M λN=M∪N’ 

Let ⊛ denote ∩, ∪, −, ∆, λ, γ, θ, +, *. Then, all the types of soft set operations may be 

given with the following generalised definitions: 

Definition 2.5. Let (F, M), (G, Y) ∈ SE(U). The restricted ⊛ operation of (F,M) and (G, Y) 

is the soft set (H,Ƶ), denoted to be (F, M) ⊛R (G, Y) = (H, Z), where Z=M ∩ Y ≠ ∅ and for all 

v ∈ Z, H(v) = F(v) ⊛ G(v). Here, if Z= M ∩ Y = ∅, then (F, M) ⊛R (G, Y)=∅∅  (Ali et al., 2009; 

Ali et al, 2011; Sezgin and Atagün, 2011; Aybek, 2024).  

Definition 2.6. Let (F, M), (G, Y) ∈ SE(U). The extended ⊛ operation (F, M) and (G, Y) 

is the soft set (H, Ƶ), indicated by (F, M) ⊛ε(G, Y) = (H, Ƶ), where  Z = M ∪ Y and for all v ∈

Z, 

H(v) = {
F(v), v ∈ M − Y
G(v), v ∈ Y − M

F(v) ⊛ G(v), v ∈ M ∩ Y
 

(Maji et al., 2003; Ali et al., 2009; Sezgin et al., 2019; Stojanavic, 2021; Aybek, 2024). 

Definition 2.7. Let (F, M), (G, Y) ∈ SE(U). The complementary extended ⊛ operation 

(F, M) and (G, Y) is the soft set (H, Ƶ), indicated by (F, M) 
＊

  ⊛ε
 (G, Y) = (H, Ƶ), where  Z =

M ∪ Y and for all v ∈ Z, 

H(v) = {

F′(v), v ∈ M − Y

G′(v), v ∈ Y − M

F(v) ⊛ G(v), v ∈ M ∩ Y

 

(Sarıalioğlu, 2024; Akbulut, 2024; Demirci, 2024).  
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Definition 2.8. Let (F, M), (G, Y) ∈ SE(U). The soft binary piecewise ⊛ of (F, M) and 

(G,Y) is the soft set (H,V), indicated by (F, M)
~
⊛(G, Y) = (H, M), where for all v∈ M 

H(v) = {
F(v), v ∈ M − Y

F(v) ⊛ G(v), v ∈ M ∩ Y
 

(Eren, 2019; Sezgin and Yavuz, 2023b; Yavuz, 2024; Sezgin and Çalışıcı, 2024,). 

           Definition 2.9. Let (F, M), (G, Y) ∈ SE(U). The complemetary soft binary piecewise ⊛ 

of (F, M) and (G,Y) is the soft set (H,M), indicated by (F, M)
＊
~
⊛

(G, Y) = (H, M), where for all 

v∈M 

H(v) = {
F′(v), v ∈ M − Y

F(v) ⊛ G(v), v ∈ M ∩ Y
 

(Sezgin and Demirci, 2023; Sezgin and Sarıalioğlu, 2024; Sezgin and Atagün, 2023; Sezgin 

and Aybek, 2023; Sezgin and Dagtoros, 2023; Sezgin et al. 2023a, 2023b; Sezgin and Yavuz, 

2023a; Sezgin and Çağman, 2024). 

For the possible future graph applications and network analysis as regards soft sets, we refer to 

Pant et al. (2024) which is motivated by the divisibility of determinants. 

 

3. Complementary Extended Lambda Operation 

In this section, complementary extended lambda operation is introduced, and its full 

algebraic properties are analyzed in detail. 

Definition 3.1. Let (F, T) and (G, Ƶ) be two soft sets over U. The complementary extended 

lambda operation of (F, T) and (G, Ƶ) is the soft set (H, C), indicated by (F, T)
∗

 λ𝜀
(G,Ƶ)=(H,C), 

where for all ϣ∊C=T∪Ƶ; 

                                                   F’(ϣ)         ϣ∊T\Ƶ 

                                   H(ϣ)=     G’(ϣ)                  ϣ∊Ƶ\T 

                                                  F(ϣ)∪G’(ϣ)        ϣ∊T∩Ƶ 

Example 3.2. Let E={e1,e2,e3,e4} be the parameter set and Ƶ={e1, e3} and 

B={e2, e3, e4} be two subsets of E and U={h1,h2,h3,h4,h5} be the universal set.  

Assume that (F, 

Ƶ)={( e1,{h2,h5}),(e3,{h1,h2,h5})},(G,B)={( e2,{h1,h4,h5}),(e3,{h2,h3,h4}),(e4,{h3,h5})} be 

soft sets over U. Let (F,T)
∗

  λ𝜀
(G,Ƶ)=(H,T∪Ƶ),  where for all ϣ ∊ T∪Ƶ; 
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               F’(ϣ)                 ϣ∊T\Ƶ 

H(ϣ)=    G’(ϣ)                 ϣ∊Ƶ\T 

               F(ϣ)∪G’(ϣ)      ϣ∊T∩Ƶ 

Here, since T∪Ƶ={e1,e2,e3,e4}, T\Ƶ ={e1}, Ƶ\B={e2,e4}, T∩Ƶ={e3}, 

H(e1) =F'(e1)={ h1,h3,h4}, H(e2) =G'(e2)={h2,h3}, H(e4) =G'(e4)={h1,h2, h4} and 

H(e3)=F(e3)∪G’(e3)= {h1,h2,h5}. 

Thus, (F,T)
∗

  λ𝜀
(G,Ƶ)={(e1,{h1,h3, h4}), (e2,{h2,h3}), (e3, {h1, h2, h5}), (e4,{ h1,h2,h4})}.  

Proposition 3.3.
∗

  λ𝜀
 is closed in  SE(U).  

Proof:  
∗

  λ𝜀
: SE(U)x SE(U)→ SE(U) 

                               ((F,T), (G,Ƶ)) → (F,T) 
∗

  λ𝜀
 (G,Ƶ)=(H,T∪Ƶ) 

Similarly, 

                             
∗

  λ𝜀
: ST(U)x ST(U)→ ST(U) 

                                    ((F,T), (G,T)) → (F, T)
∗

  λ𝜀
(G, T)=(K,T∪ T)=(K,T) 

That is, when T is a fixed subset of the set E and (F, T) and (G, T) are elements of ST(U), 

then so is (F,T)
∗

  λ𝜀
 (G, T). Namely, ST is closed under 

∗
  λ𝜀

 as well. 

Proposition 3.4. [(F, T)
∗

  λ𝜀
 (G, Ƶ)] 

∗
  λ𝜀

(H,M) ≠ (F,T) 
∗

  λ𝜀
[(G,Ƶ)

∗
  λ𝜀

(H,M)]. 

Proof: Firstly, let's consider the left hand side (LHS). Suppose (F, 

T)
∗

  λ𝜀
 (G,Ƶ)=(S,T∪Ƶ), where for all  ϣ∊T∪Ƶ;         

               F’(ϣ)               ϣ∊T\Ƶ 

S(ϣ)=     G’(ϣ)              ϣ∊Ƶ\T 

                F(ϣ)∪G’(ϣ)   ϣ∊T∩Ƶ            

Let (S, T∪Ƶ)
∗

  λ𝜀
(H, M) =(R,(T∪Ƶ)∪M)),  where for all ϣ∊(T∪Ƶ)∪M, 

               S’(ϣ)                 ϣ∊(T∪Ƶ)\M 

R(ϣ)=    H’(ϣ)                 ϣ∊M\(T∪M) 

               S(ϣ)∪H’(ϣ)      ϣ∊(T∪Ƶ)∩M 
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Hence,               

                F(ϣ)                              ϣ∊(T\Ƶ)\M=T∩Ƶ’∩M’        

               G(ϣ)         ϣ∊(Ƶ\T) \M=T’∩Ƶ∩M’ 

               F’(ϣ)∩G(ϣ)        ϣ∊(T∩Ƶ) \M=T∩Ƶ∩M’ 

R(ϣ)=    H’(ϣ)         ϣ∊M\(T∪Ƶ) =T’∩Ƶ’∩M 

               F’(ϣ)∪H’(ϣ)        ϣ∊(T\Ƶ) ∩M=T∩Ƶ’∩M 

               G’(ϣ)∪H’(ϣ)        ϣ∊(Ƶ\T) ∩M=T’∩Ƶ∩M 

               [F’(ϣ)∩G(ϣ)]∪H’(ϣ)   ϣ∊(T∩Ƶ)∩M=T∩Ƶ∩M       

(G, Ƶ)
∗

  λ𝜀
(H,M)=(L,Ƶ∪M), where for all ϣ∊Ƶ∪M; 

               G’(ϣ)       ϣ∊Ƶ\M 

L(ϣ) =    H’(ϣ)       ϣ∊M\Ƶ 

               G(ϣ)∪H’(ϣ)     ϣ∊Ƶ∩M 

(F, T)
∗

 λ𝜀
(L,Ƶ∪M) =(N,(T∪(Ƶ∪M)), where for all ϣ∊T∪Ƶ∪M; 

               F’(ϣ)                 ϣ∊T\(Ƶ∪M) 

N(ϣ)=    R’(ϣ)                 ϣ∊(Ƶ∪M)\T 

                F(ϣ)∪R’(ϣ)     ϣ∊T∩(Ƶ∪M) 

Hence,     

               F’(ϣ)   ϣ∊T\(Ƶ∪M) =T∩Ƶ’∩M’     

               G(ϣ)   ϣ∊(Ƶ\M) \T=T’∩Ƶ∩M’ 

               H(ϣ)   ϣ∊(M\Ƶ) \T=T’∩Ƶ’∩M 

N(ϣ)=    G’(ϣ)∩H(ϣ)  ϣ∊(Ƶ∩M) \T=T’∩Ƶ∩M 

               F(ϣ)∪G(ϣ)   ϣ∊T∩(Ƶ\M) =T∩Ƶ∩M’ 

               F(ϣ)∪H(ϣ)   ϣ∊T∩(M\Ƶ) =T∩Ƶ’∩M 

               F(ϣ)∪[G’(ϣ)∩H(ϣ)] ϣ∊T∩(Ƶ∩M) =T∩Ƶ∩M       

Thus, (R, (T∪Ƶ) ∪M)≠(N,T∪(Ƶ∪M)). That is, in the set SE(U), 
∗

 λ𝜀
 is not associative. 

Moreover, we have the following: 

Proposition 3.5. [(F, T)
∗

 λ𝜀
(G, T)]

∗
 λ𝜀

(H,T) ≠ (F,T) 
∗

 λ𝜀
[(G,T)

∗
 λ𝜀

(H,T)].     

Proof: Since [F’(ϣ)∩G(ϣ)]∪H’(ϣ)≠F(ϣ)∪[G’(ϣ)∩H(ϣ)], in the set ST(U), 
∗

 λ𝜀
 is not 

associative 

Proposition 3.6. (F, T) 
∗

 λ𝜀
(G,Ƶ)≠(G,Ƶ)

∗
 λ𝜀

(F,T).  
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Proof: Firstly, the parameter sets of the soft set on both sides of the equation is T∪Ƶ, 

and thus the first condition of the soft equality is satisfied. Now let’s consider the LHS.  Let (F, 

T)
∗

 λ𝜀
(G,Ƶ)=(H,T∪Ƶ), where for all ϣ∊T∪Ƶ ,  

               F’(ϣ)  ϣ∊T\Ƶ 

H(ϣ)=    G’(ϣ)  ϣ∊Ƶ\T 

               F(ϣ)∪G’(ϣ)   ϣ∊T∩Ƶ      

Now consider the RHS. Let (G,Ƶ) 
∗

 λ𝜀
(F,T)=(S,Ƶ∪T), where for all ϣ∊Ƶ∪T , 

               G’(ϣ)                ϣ∊Ƶ\T 

S(ϣ) =    F’(ϣ)                ϣ∊T\Ƶ 

               G(ϣ)∪F’(ϣ)     ϣ∊Ƶ∩T 

Hence, (F,T)
∗

 λ𝜀
(G,Ƶ)≠(G,Ƶ)

∗
 λ𝜀

(F,T). But, if Ƶ∩T=∅, then 

(F,T)
∗

 λ𝜀
 (G,Ƶ)=(G,Ƶ)

∗
 λ𝜀

(F,T), Moreover, (F,T)
∗

 λ𝜀
(G,T)≠(G,T)

∗
 λ𝜀

(F,T), Hence, in SE(U) 

and ST(U), 
∗

 λ𝜀
 is not commutative. 

Proposition 3.7.  (F,T) 
∗

 λ𝜀
 (F,T)= UT 

Proof: Let (F,T) 
∗

 \𝜀
(F,T)=(H,T). Hence, for all ϣ∊T, H(ϣ)=F(ϣ)∪F’(ϣ)=U, thus 

(H,T)=UT. That is,
∗

 λ𝜀
is not idempotent in  SE(U). 

Proposition 3.8. (F,T) 
∗

 λ𝜀
∅T=UT 

Proof: Let ∅T=(S,T). Thus, for all ϣ∊T, S(ϣ)= ∅.  Let (F,T)
∗

 λ𝜀
(S,T)=(H,T), where for 

all ϣ∊T; H(ϣ)=F(ϣ)∪S’(ϣ)=F(ϣ)∪ U=U. Thus,  (H,T)= UT .  

Proposition 3.9. ∅T

∗
 λ𝜀

(F,T)=(F,T)r 

Proof: Let ∅T=(S,T). Hence, for all ϣ∊T, S(ϣ)=∅. Let (S,T) 
∗

 λ𝜀
(F,T)=(H,T), where for 

all ϣ∊T; H(ϣ)=S(ϣ)∪F’(ϣ)=∅ ∪F’(ϣ)=F’(ϣ). Thus, (H,T)= (F,T)r.  

Proposition 3.10. (F,T)
∗

 λ𝜀
∅∅= ∅∅

∗
 λ𝜀

(F,T)= (F,T)r 

Proof: Let  ∅∅=(S,∅) and (F,T) 
∗

 λ𝜀
(S, ∅)=(H,T∪∅), where for all ϣ∊T∪∅=T, 

               F’(ϣ)                  ϣ∊T\∅=T 

H(ϣ)=    S’(ϣ)                  ϣ∊∅ \T=∅ 

               F(ϣ)∪S’(ϣ)       ϣ∊T∩∅=∅ 
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Thus, for all ϣ∊T, H(ϣ)=F’(ϣ), and so (H,T)=(F,T)r. Similarly, let 

(S,∅)
∗

 λ𝜀
(F,T)=(K, ∅∪T), where for all ϣ∊∅∪T=T; 

               S’(ϣ)               ϣ∊∅\T=∅ 

K(ϣ)=    F’(ϣ)               ϣ∊T\∅=T 

               S(ϣ)∪ F’(ϣ)   ϣ∊∅∩T=∅  

Thus, for all ϣ∊T, K(ϣ)=F’(ϣ), (K,T)=(F,T)r 

            Proposition 3.11.  (F,T)
∗

 λ𝜀
∅E = UE 

            Proof:: Let ∅E=(T,E). Thus, for all ϣ∊E, T(ϣ)=∅. Let (F,T)
∗

 λ𝜀
(T,E)=(H,T∪E), where 

for all ϣ∊T∪E=E;                

               F’(ϣ)                ϣ∊T\E=∅ 

H(ϣ)=    T’(ϣ)                ϣ∊E\T=T’ 

               F(ϣ)∪T’(ϣ)     ϣ∊T∩E=T  

Thus,                

               F’(ϣ)         ϣ∊T\E=∅ 

 H(ϣ)=   U               ϣ∊E\T=T’ 

               U               ϣ∊T∩E=T  

For all ϣ∊E; H(ϣ)=U, so (H,E)= UE.  

 

Proposition 3.12.   (F,T)
∗

 λ𝜀
UT=(F,T) 

Proof: Let UT=(K,T). Thus, for all ϣ∊T, K(ϣ)=U. Let (F,T)
∗

 λ𝜀
(K, T)=(H,T). Hence, for 

all ϣ∊T; H(ϣ)= F(ϣ)∪T’(ϣ)=F(ϣ)∪ ∅=F(ϣ).Thus, (H,T)=(F,T).  

That is, in ST(U), the right identity element of 
∗

 λ𝜀
 is the soft set UT. 

Proposition 3.13.  UT

∗
 λ𝜀

(F,T)= UT 

Proof: Let UT=(K,T). Thus, for all ϣ∊T; K(ϣ)=U.  Let (K,T) 
∗

 λ𝜀
(F,T)=(H,T), 

where for all ϣ∊T; H(ϣ)=T(ϣ)∪F’(ϣ)=U∪F’(ϣ)=UT. Thus, (H,T)= UT. That is,  the 

left absorbing element of 
∗

 λ𝜀
 in ST(U) is the soft set UT . 

Proposition 3.14.  (F,T) 
∗

 λ𝜀
 (F,T)r=(F,T). 
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Proof: Let (F,T)r=(H,T). Thus, for all ϣ∊T;  H(ϣ)=F’(ϣ). Let (F,T)
∗

 λ𝜀
(H,T)=(L,T), 

where for all ϣ∊T; L(ϣ)=F(ϣ)∪H’(ϣ)=F(ϣ)∪F(ϣ)=F(ϣ).Thus, (L,T)=(F,T).  

That is, in SE(U), the complement of every element is its own right identity for  
∗

 λ𝜀
.  

Proposition 3.15.  (F,T)r 
∗

 λ𝜀
(F,T)=(F,T)r. 

Proof: Let (F,T)r=(H,T). Thus, for all ϣ∊T, H(ϣ)=F’(ϣ). Let (H,T) 
∗

 λ𝜀
(F,T)=(L,T), 

where for all ϣ∊T, T(ϣ)=H(ϣ)∪F’(ϣ)=F’(ϣ)∪F’(ϣ)=F’(ϣ). Thus (L,T)= (F,T)r. 

That is, in SE(U), the complement of every element is its own left absorbing element for  

∗
 λ𝜀

.  

Proposition 3.16.  [(F,T) 
∗

 λ𝜀
(G,Ƶ)]r=(F,T) γε (G,Ƶ).  

Proof: Let (F,T) 
∗

 \𝜀
 (G,Ƶ)=(H,T∪Ƶ), where for all ϣ∊T∪ Ƶ; 

               F’(ϣ)               ϣ∊T\Ƶ 

H(ϣ)=    G’(ϣ)              ϣ∊Ƶ\T 

               F(ϣ)∪G’(ϣ)   ϣ∊T∩Ƶ  

Let (H,T∪Ƶ)r =(K,T∪Ƶ), where for all ϣ∊T∪ Ƶ; 

               F(ϣ)   ϣ∊T\Ƶ 

K(ϣ)=    G(ϣ)  ϣ∊Ƶ\T 

               F’(ϣ)∩G(ϣ)  ϣ∊T∩Ƶ  

Thus, (K,T∪Ƶ)= (F,T) +ε (G,Ƶ).     

Proposition 3.17.  (F,T) 
∗

 λ𝜀
(G, T)=∅T ⇔(F, T) = ∅T  and  (G, T) = UT. 

Proof: Let (F, T)
∗

 λ𝜀
(G, T) = (K,T), where for all ϣ∊T; K(ϣ)=F(ϣ)∪G’(ϣ). Since 

(K,T)=∅T, for all ϣ∊T, K(ϣ)=∅. Thus, for all ϣ∊T; K(ϣ)=F(ϣ)∪G’(ϣ)=∅ ⇔ for all ϣ ∊ T, 

F(ϣ)=∅  and G’(ϣ)=∅  ⇔ for all ϣ∊T, F(ϣ)=∅ and G(ϣ)=U ⇔(F, T) = ∅T  and (G,T)= UT 

Proposition 3.18.  ∅T ⊆̃(F,T)
∗

 λ𝜀
(G,Ƶ), ∅Z ⊆̃(F,T)

∗
 λ𝜀

(G,Ƶ),  ∅Z ⊆̃ (G,Ƶ) 
∗

 λ𝜀
 (F,T), 

∅T ⊆̃ (G,Ƶ)
∗

 λ𝜀
 (F,T). Besides, (F,T) 

∗
 λ𝜀

(G,Ƶ) ⊆̃  UT∪Ƶ and (G,Ƶ)
∗

 λ𝜀
(F,T) ⊆̃  UƵ∪T.  

Proposition 3.19.   (F,T) ⊆̃(F,T)
∗

 λ𝜀
(G,T) and (G,T)r ⊆̃(F,T) 

∗
 λ𝜀

(G,T)  

Proof: Let (F,T) 
∗
λ𝜀

(G,T)=(H,Ƶ), where for all ϣ∊T; H(ϣ)=F(ϣ) ∪G’(ϣ). Thus, for all 

ϣ∊T, H(ϣ)= 
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F(ϣ) ⊆ F(ϣ) ∪ G′(ϣ) ve H(ϣ) = G′(ϣ) ⊆ F(ϣ) ∪ G′(ϣ). Thus, (F,T) ⊆̃(F,T)
∗

 λ𝜀
(G,T) and  

(G,T)r ⊆̃(F,T) 
∗

 λ𝜀
(G,T)  

Proposition 3.20.  If  (F,T) ⊆̃ (G, T), then (H,Ƶ) 
∗

 λ𝜀
(G,T) ⊆̃(H,Ƶ) 

∗
 λ𝜀

(F,T) 

Proof: Let (F,T)⊆̃ (G, T), where for all ϣ∊T, F(ϣ)⊆G(ϣ) and G’(ϣ)⊆F’(ϣ). Let (H,Ƶ) 

∗
 λ𝜀

(G,T)=(Y,Ƶ∪T), where for all ϣ∊Ƶ∪T;    

               H’(ϣ)                 ϣ∊Ƶ\T  

Y(ϣ)=    G’(ϣ)                 ϣ∊T\Ƶ 

               H(ϣ)∪G’(ϣ)      ϣ∊Ƶ∩T  

Let (H,Ƶ) 
∗

 λ𝜀
 (F ,T)=(W,Ƶ∪T), where for all ϣ∊Ƶ∪T; 

                H’(ϣ)                     ϣ∊Ƶ\T  

W(ϣ)=    F’(ϣ)                      ϣ∊T\Ƶ  

                H(ϣ)∪F’(ϣ)          ϣ∊Ƶ∩T  

If  ϣ∊Ƶ\T; Y(ϣ)=H’(ϣ), then  W(ϣ)=H’(ϣ),  and so Y(ϣ)= H′(ϣ) ⊆ H’(ϣ)=W(ϣ);  

if ϣ∊T\Ƶ,  Y(ϣ)=G’(ϣ), then W(ϣ)=F’(ϣ) and so Y(ϣ)= G′(ϣ) ⊆F’(ϣ)=W(ϣ); if ϣ∊T∩Ƶ, 

Y(ϣ)=H(ϣ)∪G’(ϣ) and so W(ϣ)=F(ϣ)∪H’(ϣ),Y(ϣ)= H(ϣ) ∪

G′(ϣ) ⊆H(ϣ)∪F’(ϣ)=W(ϣ). Thus, for all ϣ∊Ƶ∪T; Y(ϣ)⊆W(ϣ). Hence, (H,T) 
∗

 λ𝜀
(G,T) 

⊆̃(H,T) 
∗

 λ𝜀
(F,T). 

Proposition 3.21.  If (H,Ƶ) 
∗

 λ𝜀
(G,T) ⊆̃(H,Ƶ) 

∗
 λ𝜀

(F,T), then (F,T) ⊆̃ (G, T)  needs not be 

true. That is the converse of Proposition 3.20 is not true in general. 

Proof:  Let E={e1,e2,e3,e4,e5, e6} be the parameter set,  T={e1,e3}, Ƶ={e1,e3, e5} be 

the subsets of E, U={h1,h2, h3,h4, h5} be the universal set, and (F,T), (G,T) ve (H,Ƶ) be soft 

sets over U such that (F,T)={(e1,,{h2, h5}),(e3,∅)}, (G,T)={(e1,,∅)},(e3,∅)}, 

(H,Ƶ)={( e1,U),(e3,U),(e5, ∅)}. 

Let (H,Ƶ)
∗

 λε
(G,T)=(L,Ƶ∪ T), where for all ϣ ∊ Ƶ ∪ T={e1, e3, e5}, 

L(e1)=H(e1) ∪G’(e1)=U, L(e3)=H(e3) ∪G’(e3)=U, L(e5)=H′(e5)=U .  

Thus, (H,Ƶ)
∗

 λε
(G,T) ={(e1,U),(e3,U),(e5,U)}. Let (H,Ƶ)

∗
 λε

(F,T)=(W,Ƶ ∪ T), where for 

all ϣ ∊ Ƶ ∪ T={e1, e3, e5}, W(e1)=H(e1) ∪F’(e1)=U, W(e3)=H(e3) ∪F’(e3)=U, 
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W(e5)=H’(e5)=U. Thus, (H,Ƶ)
∗

 λε
(F,T) ={(e1,U), (e3,U), (e5,U)}. Thus, (H,Ƶ)

∗
 λε

(G,T) 

⊆̃(H,Ƶ)
∗

 λε
(F,T), but (F,T)  is  not a soft subset of (G, T). 

Proposition 3.22. If (F,T)⊆̃ (G, T) and (K,T)⊆̃ (L, T), then 

(F,T)
∗

 λ𝜀
(L,T)⊆̃(G,T)

∗
 λ𝜀

(K,T) and (K,T)
∗

 λ𝜀
(G,T) ⊆̃(L,T)

∗
 λ𝜀

(F,T). 

Proof: Let (F,T) ⊆̃ (G, T) and (K,T) ⊆̃ (L, T). Thus, for all ϣ ∊T; F(ϣ) ⊆G(ϣ) and 

K(ϣ) ⊆L(ϣ). Thus, G’(ϣ) ⊆F’(ϣ) and L’(ϣ) ⊆K’(ϣ). Hence for all ϣ ∊T; F(ϣ) ∪

L’(ϣ) ⊆G(ϣ) ∪ K’(ϣ) and K(ϣ) ∪ G’(ϣ) ⊆L(ϣ) ∪ F’(ϣ). 

 

4. Distributions of complementary extended lambda operations over other type of 

soft set operations 

Theorem 4.1. Let (F, T), (G, Ƶ), (H,M) be soft sets over U. The complementary 

extended lambda operation has the following distributions over restricted soft set operations 

 

i) LHS Distributions 

1)If T∩(Z∆M)=∅, then (F,T) 
∗

 λ𝜀
[(G, Ƶ)  ∪R (H,M)]=[(F,T) 

∗
 λ𝜀

(G, Ƶ)]∩R[(F,T) 
∗

 λ𝜀
(H,M)]   

Proof: Consider the LHS. Let (G, Ƶ) ∪R(H,M)=(M,Ƶ∩M), where for all 

ϣ∊Ƶ∩M; M(ϣ)=G(ϣ)∪H(ϣ). Let (F,T)
∗

 λ𝜀
(M,Ƶ∩M)=(N,T∪(Ƶ∩M)), where for all 

ϣ∊T∪(Ƶ∩M);                              

               F’(ϣ)               ϣ∊T\(Ƶ∩M)  

N(ϣ)=    M’(ϣ)              ϣ∊(Ƶ∩M)\T 

               F(ϣ)∪M’(ϣ)   ϣ∊T∩(Ƶ∩M) 

Hence,               

               F’(ϣ)                                ϣ∊T\(Ƶ∩M) 

 N(ϣ)=   G’(ϣ)∩H’(ϣ)                   ϣ∊(Ƶ∩M)∩T’ 

               F(ϣ)∪ [G’(ϣ)∩H’(ϣ)]     ϣ∊T∩(Ƶ∩M)                

Now consider the RHS. Let (F,T)
∗

 λ𝜀
(G, Ƶ)=(M,T∪Ƶ), where for all ϣ∊T∪Ƶ; 

                F’(ϣ)                  ϣ∊T\Ƶ 

M(ϣ)=    G’(ϣ)                 ϣ∊Ƶ\T 

               F(ϣ)∪ G′(ϣ)       ϣ∊T∩Ƶ 
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Let (F,T) 
∗

 λ𝜀
(H,M)=(K,T∪M), where for all ϣ∊T∪M; 

               F’(ϣ)               ϣ∊T\M 

K(ϣ)=    H’(ϣ)              ϣ∊M\T 

               F(ϣ)∪H’(ϣ)   ϣ∊T∩M     

Let (M,T∪Ƶ)∩R(K,T∪M)=(W,(T∪Ƶ)∩(T∪M)), where for all ϣ∊(T∪Ƶ)∩(T∪M); 

W(ϣ)=T(ϣ)∩K(ϣ). Thus, 

               F’(ϣ)∩F’(ϣ)                                 ϣ∊(T\Ƶ)∩(T\M)=T∩Ƶ’∩M’ 

               F’(ϣ)∩H’(ϣ)                                ϣ∊(T\Ƶ)∩(M\T)= ∅ 

               F’(ϣ)∩ [F(ϣ)∪H’(ϣ)]                  ϣ∊(T\Ƶ)∩(T∩M)= T∩Ƶ’∩M 

               G’(ϣ)∩F’(ϣ)                                ϣ∊(Ƶ\T)∩(T\M)= ∅    

W(ϣ)=   G’(ϣ)∩H’(ϣ)                                ϣ∊(Ƶ\T)∩(M\T) =T’∩Ƶ∩M 

               G’(ϣ)∩[F(ϣ)∪H’(ϣ)]                  ϣ∊(Ƶ\T)∩(T∩M)= ∅ 

               [F(ϣ)∪G’(ϣ)]∩F’(ϣ)                   ϣ∊(T∩Ƶ)∩(T\M)= T∩Ƶ∩M’                

               [F(ϣ)∪G’(ϣ)]∩H’(ϣ)                  ϣ∊(T∩Ƶ)∩(M\T)= ∅ 

               [F(ϣ) ∪G’(ϣ)]∩[F(ϣ)∪H’(ϣ)]    ϣ∊(T∩Ƶ)∩(T∩M)= T∩Ƶ∩M   

  Hence, 

               F’(ϣ)                                            ϣ∊T∩Ƶ’∩M’ 

               F’(ϣ)∩H’(ϣ)                                   ϣ∊T∩Ƶ’∩M 

W(ϣ)=   G’(ϣ)∩H’(ϣ)                               ϣ∊T’∩Ƶ∩M 

               G’(ϣ)∩F’(ϣ)                                  ϣ∊T∩Ƶ∩M’                

               [F(ϣ) ∪G’(ϣ)]∩[F(ϣ)∪H’(ϣ)]    ϣ∊T∩Ƶ∩M         

Here, when considering the T\(Ƶ∩M) in the function N, since 

T\(Ƶ∩M)=T\(Ƶ∩M)’,  if an element is in the complement of (Ƶ∩M), it is either in Ƶ\M, 

in M\Ƶ, or in (Ƶ∪M)’. Thus, if  ϣ ∈ T\(Ƶ ∩ M, then ϣ∈T∩Ƶ∩M’or ϣ∈T∩Ƶ’∩M or ϣ∈ 

T∩Ƶ’∩M’. Thus, N=T under the conditions T∩Ƶ’∩M=T∩Ƶ∩M’=∅. It is obvious that 

the condition T∩Ƶ’∩M=T∩Ƶ∩M’=∅ is equivalent to the condition T∩(Z∆M)=∅. 

2) If T∩(Z∆M)=∅, then (F,T) 
∗

 λ𝜀
[(G, Ƶ)  ∩R(H,M)] = [(F,T) 

∗
 λ𝜀

(G, Ƶ)] 

∪R[(F,T)
∗

  λ𝜀
(H,M)] 

ii) RHS Distributions 

1)If ∩Ƶ∩M=∅, then [(F,T) ∪R(G,Ƶ)]
∗

  λ𝜀
(H,M)= [(F,T)

∗
  λ𝜀

(H,M)] ∩R 

[(G,Ƶ)
∗

  λ𝜀
(H,M)]. 
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Proof: Consider the LHS.  Let (F,T) ∪R(G,Ƶ)=(R,T∩Ƶ), where for all ϣ∊T∩Ƶ; 

R(ϣ)=F(ϣ)∪G(ϣ). Let (R,T∩Ƶ)
∗

  λ𝜀
(H,M)=(L,(T∩Ƶ)∪M), where for all ϣ∊(T∩Ƶ)∪M;             

              R’(ϣ)              ϣ∊(T∩Ƶ)\M 

L(ϣ)=   H’(ϣ)               ϣ∊M\(T∩Ƶ) 

               R(ϣ)∪H’(ϣ)  ϣ∊(T∩Ƶ)∩M 

Hence, 

               F’(ϣ)∩G’(ϣ)                   ϣ∊(T∩Ƶ)\M 

L(ϣ)=    H’(ϣ)                                ϣ∊M\(T∩Ƶ) 

               [F(ϣ)∪G(ϣ)]∪H’(ϣ)       ϣ∊(T∩Ƶ)∩M  

Now consider the RHS, i.e, [(F,T)
∗

  λ𝜀
(H,M)]∩R[(G,Ƶ)

∗
  λ𝜀

(H,M)] Let 

(F,T)
∗

  λ𝜀
(H, M)=(S,T∪M), where for all ϣ∊T∪M; 

               F’(ϣ)                   ϣ∊T\M 

S(ϣ)=     H’(ϣ)                 ϣ∊M\T 

               F(ϣ)∪H’(ϣ)       ϣ∊T∩M 

Let (G,Ƶ) 
∗

  λ𝜀
 (H,M)=(K,Ƶ∪M), where for all ϣ∊Ƶ∪M;                

               G’(ϣ)              ϣ∊Ƶ\M 

K(ϣ)=    H’(ϣ                ϣ∊M\Ƶ 

               G(ϣ)∪H’(ϣ)   ϣ∊Ƶ∩M 

Let (S,T∪Ƶ) ∩R(K,Ƶ∪M)=(W,(T∪Ƶ)∩(Ƶ∪M)), where for all ϣ∊(T∪Ƶ)∩(Ƶ∪M); 

W(ϣ)=S(ϣ)∩K(ϣ). Hence, 

               F’(ϣ)∩G’(ϣ)                                   ϣ∊(T\M)∩(Ƶ\M)=T∩Ƶ∩M’ 

               F’(ϣ)∩H’(ϣ)                                   ϣ∊(T\M)∩(M\Ƶ)=∅ 

               F’(ϣ)∩ [G(ϣ)∪H’(ϣ)]                    ϣ∊(T\M)∩(Ƶ∩M)=∅ 

               H’(ϣ)∩G’(ϣ)                                  ϣ∊(M\T)∩(Ƶ\M)= ∅ 

W(ϣ)=   H’(ϣ)∩H’(ϣ)                                   ϣ∊(M\T)∩(M\Ƶ)=T’∩Ƶ’∩M 

               H’(ϣ)∩ [G(ϣ)∪H(‘ϣ)]                   ϣ∊(M\T)∩(Ƶ∩M)=T’∩Ƶ∩M  

               [F(ϣ)∪H’(ϣ)]∩G’(ϣ)                     ϣ∊(T∩M)∩(Ƶ\M)=∅ 

               [F(ϣ)∪H’(ϣ)]∩H’(ϣ)                     ϣ∊(T∩M)∩(M\Ƶ)=T∩Ƶ’∩M  

               [F(ϣ)∪H’(ϣ)]∩ [G(ϣ)∪H’(ϣ)]      ϣ∊(T∩M)∩(Ƶ∩M)=T∩Ƶ∩M 

Thus,       
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               F’(ϣ)∩G’(ϣ)                    ϣ∊T∩Ƶ∩M’ 

               H’(ϣ)                                ϣ∊T’∩Ƶ’∩M 

W(ϣ)=   H’(ϣ)                                ϣ∊T’∩Ƶ∩M 

               H’(ϣ)                                ϣ∊T∩Ƶ’∩M 

               [F(ϣ)∩ G(ϣ)]∪ H’(ϣ)     ϣ∊T∩Ƶ∩M 

Here, when considering the M\(T∩Ƶ) in the function L, since 

M\(T∩Ƶ)=M∩(T∩Ƶ)’, if an element is in the complement of (T∩Ƶ), it is either in T\Ƶ, 

Ƶ\B or in (T∪Ƶ)’. Thus, if ϣ ∈ M\(T ∩ Ƶ) , then  ϣ∈M∩T∩Ƶ’ or ϣ∈ M∩Ƶ∩T’ or ϣ∈ 

M∩T’∩Ƶ’. Hence, L=W is satisfied if T∩Ƶ∩M=∅ 

 

2) If T∩Ƶ∩M’=T∩Ƶ∩M=∅, then 

[(F,T) ∩R(G,Ƶ)]
∗

  λ𝜀
(H,M)=[(F,T)

∗
 λ𝜀

(H,M)]∩R[(G,Ƶ)
∗

  λ𝜀
 (H,M)]. 

 

Theorem 4.2. Let (F, T), (G, Ƶ), (H,M) be soft sets over U. Then, the following 

distributions of the complementary extended lambda operation over extended soft set 

operations hold: 

 

i) LHS Distributions 

 

1)If T∩(Z∆M)=∅, then 

(F,T)
∗

 λ𝜀
[(G,Ƶ) ∩ε(H,M)]=[(F,T)

∗
  λ𝜀

(G,Ƶ)]∪ε[(F,T)
∗

   λ𝜀
(H,M)]. 

Proof: Consider the LHS. Let (G,Ƶ) ∩ε(H,M)=(R,Ƶ∪M), where for all ϣ∊Ƶ∪M; 

                 G(ϣ)               ϣ∊Ƶ\M   

R(ϣ) =     H(ϣ)               ϣ∊M\Ƶ 

                 G(ϣ)∩H(ϣ)    ϣ∊Ƶ∩M 

Let (F,T)
∗

 λ𝜀
(R,Ƶ∪M) =(N,(T∪(Ƶ∪M)), where for all ϣ∊T∪(Ƶ∪M); 

               F’(ϣ)                 ϣ∊T\(Ƶ∪M) 

N(ϣ)=    R’(ϣ)                ϣ∊(Ƶ∪M)\T 

               F(ϣ)∪R’(ϣ)     ϣ∊T∩(Ƶ∪M) 
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Thus, 

               F’(ϣ)                                ϣ∊T\(Ƶ∪M)=T∩Ƶ’∩M’ 

               G’(ϣ)                                ϣ∊(Ƶ\M)\T=T’∩Ƶ∩M’ 

               H’(ϣ)                                ϣ∊(M\Ƶ)\T=T’∩Ƶ’∩M 

N(ϣ)=    G’(ϣ)∪H’(ϣ)                   ϣ∊(Ƶ∩M)\T=T’∩Ƶ∩M 

               F(ϣ)∪G’(ϣ)                     ϣ∊T∩(Ƶ\M)=T∩Ƶ∩M’ 

               F(ϣ)∪H’(ϣ)                     ϣ∊T∩(M\Ƶ)=T∩Ƶ’∩M    

               F(ϣ)∪ [G’(ϣ)∪H’(ϣ)]     ϣ∊T∩(Ƶ∩M)=T∩Ƶ∩M     

Now consider the RHS, i.e., [(F,T)
∗

  λ𝜀
(G,Ƶ)]∪ε[(F,T)

∗
  λ𝜀

((H,M)]. Let 

(F,T)
∗
λ
(G,Ƶ)=(K,T∪Ƶ). Hence, 

for all ϣ∊T∪Ƶ; 

               F’(ϣ)                ϣ∊T\Ƶ 

K(ϣ) =   G’(ϣ)               ϣ∊Ƶ\T 

               F(ϣ)∪G’(ϣ)    ϣ∊T∩Ƶ 

Let (F,T)
∗

  λ𝜀
(H,M)=(S,T∪M), where for all ϣ∊T∪M; 

               F’(ϣ)                  ϣ∊T\M 

S(ϣ) =    H’(ϣ)                 ϣ∊M\T 

              F(ϣ)∪H’(ϣ)       ϣ∊T∩M 

Let (K,T∪Ƶ) ∪ε(S,T∪M)=(L,(T∪Ƶ)∪(T∪M)), where for all ϣ∊(T∪Ƶ)∪(T∪M); 

               K(ϣ)               ϣ∊(T∪Ƶ)\(T∪M) 

L(ϣ)=     S(ϣ)                 ϣ∊(T∪M)\(T∪Ƶ) 

               K(ϣ)∪S(ϣ)     ϣ∊(T∪Ƶ)∩(T∪M) 
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Thus, 

               F’(ϣ)                                                ϣ∊(T\Ƶ)\(T∪M)=∅ 

               G’(ϣ)                                               ϣ∊(Ƶ\T)\(T∪M)=T’∩Ƶ∩M’ 

               F(ϣ)∪G’(ϣ)                                    ϣ∊(T∩Ƶ)\(T∪M)=∅ 

               F’(ϣ)                                               ϣ∊(T\M)\(T∪Ƶ)=∅ 

               H’(ϣ)                                               ϣ∊(M\T)\(T∪Ƶ)=T’∩Ƶ’∩M 

               F(ϣ)∪H’(ϣ)                                    ϣ∊(T∩M)\(T∪Ƶ)=∅ 

               F’(ϣ)∪F’(ϣ)                                    ϣ∊(T\Ƶ)∩(T\M)=T∩Ƶ’∩M’ 

L(ϣ)=    F’(ϣ)∪H’(ϣ)                                    ϣ∊(T\Ƶ)∩(M\T)=∅ 

               F’(ϣ)∪ [F(ϣ)∪H’(ϣ)]                     ϣ∊(T\Ƶ)∩(T∩M)=T∩Ƶ’∩M 

               G’(ϣ)∪F’(ϣ)                                   ϣ∊(Ƶ\T)∩(T\M)=∅ 

               G’(ϣ)∪H’(ϣ)                                  ϣ∊(Ƶ\T)∩(M\T)= T’∩Ƶ∩M 

               G’(ϣ)∪ [F(ϣ)∪H’(ϣ)]                    ϣ∊(Ƶ\T)∩(T∩M)=∅ 

               [F(ϣ)∪G’(ϣ)]∪F’(ϣ)                      ϣ∊(T∩Ƶ)∩(T\M)=T∩Ƶ∩M’ 

               [F(ϣ)∪G’(ϣ)]∪H’(ϣ)                     ϣ∊(T∩Ƶ)∩(M\T)=∅ 

               [F(ϣ)∪G’(ϣ)]∪ [F(ϣ)∪H’(ϣ)]       ϣ∊(T∩Ƶ) ∩(T∩M)=T∩Ƶ∩M 

Therefore, 

               G’(ϣ)                                            ϣ∊T’∩Ƶ∩M’ 

               H’(ϣ)                                            ϣ∊T’∩Ƶ’∩M 

               F’(ϣ)                                              ϣ∊T∩Ƶ’∩M’ 

L(ϣ)=    U                                                     ϣ∊T∩Ƶ’∩M 

               G’(ϣ)∪H’(ϣ)                               ϣ∊T’∩Ƶ∩M 

               U                                                    ϣ∊T∩Ƶ∩M’ 

               [F(ϣ)∪G’(ϣ)]∪[F(ϣ)∪H’(ϣ)]     ϣ∊T∩Ƶ∩M 

 

N=L under the condition T∩Ƶ∩M’=T∩Ƶ’∩M=∅. It is obvious that the condition 

T∩Ƶ’∩M=T∩Ƶ∩M’=∅ is equivalent to the condition T∩(Z∆M)=∅ 

 

2) If T∩(Z∆M), then (F,T) 
∗

 λ𝜀
[(G,Ƶ) ∪ε(H,M)]=[(F,T)

∗
  λ𝜀

(G,Ƶ)]∩ε[(F,T)
∗

  λ𝜀
(H,M)]. 

ii) RHS Distributions 

1)If T∩Ƶ∩M=∅ , then [(F,T) ∩ε (G,Ƶ)]
∗

  λ𝜀
(H,M)= [(F,T)

∗
  λ𝜀

(H,M)] ∪ε 

[(G,Ƶ)
∗

  λ𝜀
(H,M)]. 
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Proof: Consider the LHS. Let (F,T) ∩ε(G,Ƶ)=(R,T∪Ƶ), where for all ϣ∊T∪Ƶ; 

                 F(ϣ)                ϣ∊T\Ƶ 

R(ϣ) =     G(ϣ)                ϣ∊Ƶ\T 

                 F(ϣ)∩G(ϣ)     ϣ∊T∩Ƶ 

Let (R,T∪Ƶ)
∗

  λ𝜀
(H,M) =(N,(T∪Ƶ)∪M), where for all ϣ∊(T∪Ƶ)∪M; 

                 R’(ϣ)                ϣ∊(T∪Ƶ)\M 

N(ϣ)=      H’(ϣ)               ϣ∊M\(T∪Ƶ) 

                 R(ϣ)∪H’(ϣ)     ϣ∊(T∪Ƶ)∩M     

Thus, 

                 F’(ϣ)                               ϣ∊(T\Ƶ)\M=T∩Ƶ’∩M’ 

                 G’(ϣ)                              ϣ∊(Ƶ\T)\M=T’∩Ƶ∩M’ 

                 F’(ϣ)∪G’(ϣ)                  ϣ∊(T∩Ƶ)\M=T∩Ƶ∩M’ 

N(ϣ)=      H’(ϣ)                              ϣ∊M\(T∪Ƶ)=T’∩Ƶ’∩M 

                 F(ϣ)∪H’(ϣ)                    ϣ∊(T\Ƶ)∩M=T∩Ƶ’∩M 

                 G(ϣ)∪H’(ϣ)                   ϣ∊(Ƶ\T)∩M =T’∩Ƶ∩M     

                 [F(ϣ)∩G(ϣ)]∪H’(ϣ)     ϣ∊(T∩Ƶ)∩M=T∩Ƶ∩M 

 Consider the RHS, i.e., [(F,T)
∗

  λ𝜀
(H,M)]∪ε[(G,Ƶ)

∗
  λ𝜀

 (H,M)]. Let  

(F,T)
∗

 λ𝜀
(H,M)=(K,T∪Ƶ), where for all ϣ∊T∪M; 

                  F’(ϣ)              ϣ∊T\M  

K(ϣ) =      H’(ϣ)              ϣ∊M\T 

                  F(ϣ)∪H’(ϣ)   ϣ∊T∩M 

Let (G,Ƶ)
∗

  λ𝜀
 (H,M)=(S,T∪M), where for all ϣ∊Ƶ∪M;                  

                  G’(ϣ)              ϣ∊Ƶ\M 

S(ϣ) =       H’(ϣ)              ϣ∊M\Ƶ 

                  G(ϣ)∪H’(ϣ)   ϣ∊Ƶ∩M 

Let (K,T∪M) ∪ε(S,Ƶ∪M)=(L,(T∪M)∪(Ƶ∪M)), where for all ϣ∊(T∪M)∪(Ƶ∪M);                  

                  K(ϣ)               ϣ∊(T∪M)\(Ƶ∪M) 

L(ϣ)=       S(ϣ)               ϣ∊(Ƶ∪M)\(T∪M) 

                 K(ϣ)∪S(ϣ)    ϣ∊(T∪M)∩(Ƶ∪M)  

 

Thus, 
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               F’(ϣ)                                                ϣ∊(T\M)\(Ƶ∪M)=T∩Ƶ’∩M’ 

               H’(ϣ)                                               ϣ∊(M\T)\(Ƶ∪M)=∅ 

               F(ϣ)∪H’(ϣ)                                    ϣ∊(T∩M)\(Ƶ∪M)=∅ 

               G’(ϣ)                                               ϣ∊(Ƶ\M)\(T∪M)=T’∩Ƶ∩M’ 

               H(ϣ)                                                ϣ∊(M\Ƶ)\(T∪M)=∅ 

               G(ϣ)∪H’(ϣ)                                    ϣ∊(Ƶ∩M)\(T∪M)=∅ 

               F’(ϣ)∪G’(ϣ)                                   ϣ∊(T\M)∩(Ƶ\M)=T∩Ƶ∩M’ 

L(ϣ)=    F’(ϣ)∪H’(ϣ)                                    ϣ∊(T\M)∩(M\Ƶ)=∅ 

               F’(ϣ)∪ [G(ϣ)∪H’(ϣ)]                    ϣ∊(T\M)∩(Ƶ∩M)=∅ 

               H’(ϣ)∪G’(ϣ)                                  ϣ∊(M\T)∩(Ƶ\M)=∅ 

               H’(ϣ)∪H’(ϣ)                                  ϣ∊(M\T)∩(M\Ƶ)= T’∩Ƶ’∩M 

               H’(ϣ)∪ [G(ϣ)∪H’(ϣ)]                   ϣ∊(M\T)∩(Ƶ∩M)=T’∩Ƶ∩M 

               [F(ϣ)∪H’(ϣ)]∪G’(ϣ)                     ϣ∊(T∩M)∩(Ƶ\M)=∅ 

               [F(ϣ)∪H’(ϣ)]∪H’(ϣ)                     ϣ∊(T∩M)∩(M\Ƶ)=T∩Ƶ’∩M 

               [F(ϣ)∪H’(ϣ)]∪ [G(ϣ)∪H’(ϣ)]      ϣ∊(T∩M)∩(Ƶ∩M)=T∩Ƶ∩M 

Hence,               

               F’(ϣ)    ϣ∊T∩Ƶ’∩M’ 

               G’(ϣ)    ϣ∊T’∩Ƶ∩M’ 

               F’(ϣ)∪G’(ϣ)   ϣ∊T∩Ƶ∩M’ 

L(ϣ)=    H’(ϣ)    ϣ∊T’∩Ƶ’∩M 

               G(ϣ)∪H’(ϣ)   ϣ∊T’∩Ƶ∩M 

               F(ϣ)∪H’(ϣ)   ϣ∊T∩Ƶ’∩M 

               [F(ϣ)∪H’(ϣ)]∪ [G(ϣ)∪ H′(ϣ)] ϣ∊T∩Ƶ∩M 

 

It is observed that N=L under the condition T∩Ƶ∩M’=∅. 

 

2)If T∩Ƶ∩M’=∅, then [(F,T) ∪ε (G,Ƶ)]
∗

  λ𝜀
(H,M)=[(F,T)

∗
  λ𝜀

(H,M)] ∪ε 

[(G,Ƶ)
∗

  λ𝜀
(H,M)]. 

 

Theorem 4.3. Let (F, T), (G, Ƶ), (H,M) be soft sets over U. The following 

distributions of the complementary extended lambda operation over soft binary 

piecewise operations hold: 
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i) LHS Distributions 

1) If T∩(Z∆M)=∅ , then (F,T)
∗

  λ𝜀
[(G,Ƶ) 

~
∩ (H,M)] = [(F,T)

∗
  λ𝜀

(G,Ƶ)] 
~
∪[(F,T)

∗
  λ𝜀

(H,M)]. 

Proof:  Consider the LHS. Let (G,Ƶ) 
~
∩ (H,M)=(R,Ƶ), where for all ϣ∊Z; 

               G(ϣ)               ϣ∊Ƶ\M 

R(ϣ)= 

               G(ϣ)∩H(ϣ)    ϣ∊Ƶ∩M 

Let (F,T)
∗

  λ𝜀
(R,Ƶ) =(N,T∪Ƶ), where for all ϣ∊T∪Ƶ; 

               F’(ϣ)               ϣ∊T\Ƶ 

N(ϣ)=    R’(ϣ)               ϣ∊Ƶ\T 

              F(ϣ)∪R’(ϣ)     ϣ∊T∩Ƶ 

Hence, 

               F’(ϣ)                                    ϣ∊T\Ƶ 

               G’(ϣ)                                   ϣ∊(Ƶ\M)\T=T’∩Ƶ∩M’ 

N(ϣ)=    G’(ϣ)∪H’(ϣ)                       ϣ∊(Ƶ∩M)\T=T’∩Ƶ∩M 

               F(ϣ)∪G’(ϣ)                         ϣ∊T∩(Ƶ\M)=T∩Ƶ∩M’ 

               F(ϣ)∪ [G’(ϣ)∪H’(ϣ)]        ϣ∊T∩(Ƶ∩M)=T∩Ƶ∩M     

Consider the RHS, i.e., [(F,T)
∗

  λ𝜀
(G,Ƶ)] 

~
∪ [(F,T)

∗
  λ𝜀

 (H,M)]. Let (F,T)
∗

  λ𝜀
 (G, 

Ƶ)=(K,T∪Ƶ), where for all ϣ∊T∪Ƶ; 

               F’(ϣ)               ϣ∊T\Ƶ 

K(ϣ) =   G’(ϣ)               ϣ∊Ƶ\T 

               F(ϣ)∪G’(ϣ)    ϣ∊T∩Ƶ 

Let (F,T) 
∗

  λ𝜀
(H,M)=(S,T∪M), where for all ϣ∊T∪M; 

               F’(ϣ)               ϣ∊T\M 

S(ϣ) =    H’(ϣ)              ϣ∊M\T 

              F(ϣ)∪H’(ϣ)    ϣ∊T∩M 

Let (K,T∪Ƶ) 
~
∪(S,T∪M)=(L,(T∪Ƶ)∪(T∪M)), where for all ϣ∊(T∪Ƶ)∪(T∪M); 

L(ϣ) =    K(ϣ)                 ϣ∊(T∪Ƶ)\(T∪M) 

                K(ϣ)∪S(ϣ)      ϣ∊(T∪Ƶ)∩(T∪M)       
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Thus, 

               F’(ϣ)                                                ϣ∊(T\Ƶ)\(T∪M)=∅ 

               G’(ϣ)                                               ϣ∊(Ƶ\T)\(T∪M)=T’∩Ƶ∩M’ 

               F(ϣ)∪G’(ϣ)                                    ϣ∊(T∩Ƶ)\(T∪M)=∅ 

               F’(ϣ)∪F’(ϣ)                                    ϣ∊(T\Ƶ)∩(T\M)=T∩Ƶ’∩M’ 

               F’(ϣ)∪H’(ϣ)                                   ϣ∊(T\Ƶ)∩(M\T)=∅ 

               F’(ϣ)∪ [F(ϣ)∪H’(ϣ)]                     ϣ∊(T\Ƶ)∩(T∩M)=T∩Ƶ’∩M 

L(ϣ)=    G’(ϣ)∪F’(ϣ)                                    ϣ∊(Ƶ\T)∩(T\M)=∅ 

               G’(ϣ)∪H’(ϣ)                                   ϣ∊(Ƶ\T)∩(M\T)= T’∩Ƶ∩M 

               G’(ϣ)∪ [F(ϣ)∪H’(ϣ)]                    ϣ∊(Ƶ\T)∩(T∩M)=∅ 

               [F(ϣ)∪G’(ϣ)]∪F’(ϣ)                      ϣ∊(T∩Ƶ)∩(T\M)=T∩Ƶ∩M’ 

               [F(ϣ)∪G’(ϣ)]∪H’(ϣ)                     ϣ∊(T∩Ƶ)∩(M\T)=∅ 

               [F(ϣ)∪G’(ϣ)]∪ [F(ϣ)∪H’(ϣ)]       ϣ∊(T∩Ƶ) ∩(T∩M)=T∩Ƶ∩M 

 

Hence,          

               G’(ϣ)                                              ϣ∊T’∩Ƶ∩M’ 

               F’(ϣ)                                                 ϣ∊T∩Ƶ’∩M’ 

L(ϣ)=    U                                                      ϣ∊T∩Ƶ’∩M 

               G’(ϣ)∪H’(ϣ)                                  ϣ∊T’∩Ƶ∩M 

               U                                                       ϣ∊T∩Ƶ∩M’ 

               [F(ϣ)∪G’(ϣ)]∪ [F(ϣ)∪H’(ϣ)]       ϣ∊T∩Ƶ∩M 

 

 Here, if we consider T\Ƶ in the function N,  since T\Ƶ=T∩Ƶ’,  if an element is in the 

complement of Z, then the element is either in M\Ƶ or in (M∪Ƶ)’. Thus, if ϣ∈T\Ƶ, then 

ϣ∈T∩M∩Ƶ’ veya ϣ∈T∩M’∩Ƶ’. Therefore, N=L under the T∩Ƶ’∩M=T∩Ƶ∩M’=∅  It is 

obvious that the condition T∩Ƶ’∩M=T∩Ƶ∩M’=∅  is equivalent to the condition T∩(Z∆M)=∅. 

 

2) If T∩(Z∆M)=∅ , then (F,T)
∗

  λ𝜀
[(G,Ƶ) 

~
∪ (H,M)] = [(F,T)

∗
  λ𝜀

(G,Ƶ)] 
~
∩[(F,T)

∗
  λ𝜀

(H,M)]. 

ii) RHS Distributions 

 

1) If T∩(Z∆M)=∅, then  [(F,T)
~
∪ (G,Ƶ)]

∗
  λ𝜀

 (H,M) = [(F,T)
∗

  λ𝜀
(H,M)] 

~
∪ [(G,Ƶ)

∗
  λ𝜀

 

(H,M)] 
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Proof: Consider the LHS. Let (F,T) 
~
∪ (G,Ƶ)=(R,T), where for all ϣ∊T; 

 

               F(ϣ)                ϣ∊T\Ƶ 

R(ϣ)= 

               F(ϣ)∪G(ϣ)     ϣ∊T∩Ƶ 

Let (R,T) 
∗

  λ𝜀
(H,M) =(N,T∪M), where for all ϣ∊T∪M; 

               R’(ϣ)                 ϣ∊T\M 

N(ϣ)=    H’(ϣ)                 ϣ∊M\T 

               R(ϣ)∪H’(ϣ)      ϣ∊T∩M 

Thus,        

               F’(ϣ)                              ϣ∊(T\Ƶ)\M=T∩Ƶ’∩M’ 

               F’(ϣ)∩G’(ϣ)                 ϣ∊(T∩Ƶ)\M=T∩Ƶ∩M’ 

N(ϣ)=    H’(ϣ)                             ϣ∊M\T 

               F(ϣ)∪H’(ϣ)                  ϣ∊(T\Ƶ)∩M=T∩Ƶ’∩M 

              [F(ϣ)∪G(ϣ)]∪H’(ϣ)    ϣ∊(T∩Ƶ)∩M=T∩Ƶ∩M     

Now consider the RHS, i.e.,  [(F,T)
∗

  λ𝜀
(H,M)] 

~
∪ [(G,Ƶ)

∗
  λ𝜀

(H,M)]. Let 

(F,T) 
∗

  λ𝜀
(H,M)=(K,T∪M), where for all ϣ∊T∪M 

               F’(ϣ)               ϣ∊T\M 

K(ϣ) =   H’(ϣ)               ϣ∊M\T 

               F(ϣ)∪H’(ϣ)    ϣ∊T∩M 

Let (G,Ƶ)
∗

  λ𝜀
 (H,M)=(S, Ƶ∪M), where for all ϣ∊Ƶ∪M; 

              G’(ϣ)               ϣ∊Ƶ\M 

S(ϣ) =    H’(ϣ)              ϣ∊M\Ƶ 

               G(ϣ)∪H’(ϣ    ϣ∊Ƶ∩M 

Let (K,T∪M) 
~
∪ (S,Ƶ∪M)=(L,(T∪M)∪(Ƶ∪M)), where for all ϣ∊(T∪M)∪(Ƶ∪M);               

                K(ϣ)               ϣ∊(T∪M)\(Ƶ∪M) 

L(ϣ)=       

               K(ϣ)∪S(ϣ)    ϣ∊(T∪M)∩(Ƶ∪M)    
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Thus, 

               F’(ϣ)                                                ϣ∊(T\M)\(Ƶ∪M)=T∩Ƶ’∩M’ 

               H’(ϣ)                                               ϣ∊(M\T)\(Ƶ∪M)=∅ 

               F(ϣ)∪H’(ϣ)                                    ϣ∊(T∩M)\(Ƶ∪M)=∅  

               F’(ϣ)∪G’(ϣ)                                   ϣ∊(T\M)∩(Ƶ\M)=T∩Ƶ∩M’ 

               F’(ϣ)∪H’(ϣ)                                   ϣ∊(T\M)∩(M\Ƶ)=∅ 

               F’(ϣ)∪ [G(ϣ)∪H’(ϣ)]                    ϣ∊(T\M)∩(Ƶ∩M)=∅ 

               H’(ϣ)∪G’(ϣ)                                  ϣ∊(M\T)∩(Ƶ\M)=∅ 

L(ϣ)=    H’(ϣ)∪H’(ϣ)                                   ϣ∊(M\T)∩(M\Ƶ)= T’∩Ƶ’∩M 

               H’(ϣ)∪ [G(ϣ)∪H’(ϣ)]                   ϣ∊(M\T)∩(Ƶ∩M)=T’∩Ƶ∩M 

               [F(ϣ)∪H’(ϣ)]∪G’(ϣ)                     ϣ∊(T∩M)∩(Ƶ\M)=∅ 

               [F(ϣ)∪H’(ϣ)]∪H’(ϣ)                     ϣ∊(T∩M)∩(M\Ƶ)=T∩Ƶ’∩M 

               [F(ϣ)∪H’(ϣ)]∪ [G(ϣ)∪H’(ϣ)]      ϣ∊(T∩M)∩(Ƶ∩M)=T∩Ƶ∩M 

Hence,               

               F’(ϣ)                                               ϣ∊T∩Ƶ’∩M’ 

               F’(ϣ)∪G’(ϣ)                                   ϣ∊T∩Ƶ∩M’ 

L(ϣ)=    H’(ϣ)                                               ϣ∊T’∩Ƶ’∩M 

               G(ϣ)∪H’(ϣ)                                   ϣ∊T’∩Ƶ∩M 

               F(ϣ)∪H’(ϣ)                                    ϣ∊T∩Ƶ’∩M 

               [F(ϣ)∪H’(ϣ)]∪ [G(ϣ)∪H’(ϣ)]      ϣ∊T∩Ƶ∩M 

 

Here, if we consider  M\T in the function N, since M\T=M∩T’, then if an element 

is in the complement of T, it is either in Ƶ\T or in (Ƶ∪T)’. From here, N=L under 

T’∩Ƶ∩M=T∩Ƶ∩M’=∅. It is obvious that the condition T’∩Ƶ∩M=T∩Ƶ∩M’=∅ is 

equivalent to the condition (T∆M)∩ Ƶ=∅. 

 

2) If T∩(Z∆M)=∅, then [(F,T)
~
∩ (G,Ƶ)]

∗
  λ𝜀

 (H,M)=[(F,T)
∗

  λ𝜀
(H,M)] 

~
∩ [(G,Ƶ)

∗
  λ𝜀

 (H,M)] 

 

5. Conclusion 

Soft set operations are the most fundamental building block of soft set theory for the 

progress of soft set theory in both theoretical and practical fields. Since the theory was 

introduced in 1999, many restricted and extended operations have been introduced. This work 

proposes and investigates the algebraic properties of a novel soft set operation, called 
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complementary extended lambda operation. We deal with the distributions of complementary 

extended lambda operations over other types of soft set operations. Since the concepts linked 

to soft set operations are just as important for soft sets as basic operations from classical set 

theory and thus examining the algebraic structures of soft sets in connection to new soft set 

operations offers us a thorough knowledge of their application as well as new examples of 

algebraic structures, we believe that this work contributes to the literature of both classical 

algebra and soft set theory. To determine what algebraic structures are produced in the classes 

of soft sets with a fixed parameter set or over the universe, future studies may look at different 

types of complementary extended soft set operations along with their distributions and 

properties. Moreover, this novel operation can be conveyed to bipolar soft sets, lattice ordered 

soft sets and double framed soft sets and the researchers may explore which algebraic structures 

are formed with this operation when combined with other operations, and new decision-making 

methods may be proposed with the inspiration of the operation. 
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